
156

Robust Relational Layout Synthesis from Examples for
Android

PAVOL BIELIK, ETH Zürich, Switzerland
MARC FISCHER, ETH Zürich, Switzerland
MARTIN VECHEV, ETH Zürich, Switzerland

We present a novel approach for synthesizing robust relational layouts from examples. Given an application
design consisting of a set of views and their location on the screen, we synthesize a relational layout that
when rendered, places the components at that same location.

We present an end-to-end system, called InferUI, that addresses the above challenge in the context of
Android. The system is based on the following technical contributions: (i) a formalization of the latest and
most efficient ConstraintLayout class, capturing a rich set of relational constraints, (ii) a set of robustness
properties designed to prevent common layout generalization errors, (iii) a synthesis algorithm that produces
relational layouts that generalize across multiple screen sizes and resolutions, and (iv) a probabilistic model of
constraints that guides the synthesizer towards layouts preferred by developers.

Our evaluation shows that InferUI is practically effective: it successfully synthesizes real world complex
layouts obtained from top 500 GitHub and top 500 Google Play Store applications, succeeds in 100% of the
cases when synthesizing layouts for a single device, and correctly generalizes 92% of the views across multiple
devices, all without requiring additional specifications.

CCS Concepts: • Software and its engineering → Programming by example; Automatic program-
ming; Interface definition languages; Software verification and validation; • Human-centered computing
→ Graphical user interfaces; User interface design; • Computing methodologies → Machine learning ap-
proaches;

Additional Key Words and Phrases: Program synthesis, Programming by example, Relational layouts, Proba-
bilistic models, User interface design, User interface errors

ACM Reference Format:
Pavol Bielik, Marc Fischer, and Martin Vechev. 2018. Robust Relational Layout Synthesis from Examples for
Android. Proc. ACM Program. Lang. 2, OOPSLA, Article 156 (November 2018), 29 pages. https://doi.org/10.
1145/3276526

1 INTRODUCTION
The design and creation of the user interface layouts are core parts of the application development
for both desktop and mobile applications. Creating a user interface typically involves a collaboration
between a designer, who draws an image of how the user interface should look like, and a developer
that implements the design on the desired platform such as Android, iOS,Web or desktop. Concretely,
the goal of the developer is to write an implementation of the user interface, referred to as layout,
which when rendered on the device places all the views (e.g., buttons, text views, images, etc.) at

Authors’ addresses: Pavol Bielik, Department of Computer Science, ETH Zürich, Switzerland, pavol.bielik@inf.ethz.ch; Marc
Fischer, Department of Computer Science, ETH Zürich, Switzerland, marcfisc@student.ethz.ch; Martin Vechev, Department
of Computer Science, ETH Zürich, Switzerland, martin.vechev@inf.ethz.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/11-ART156
https://doi.org/10.1145/3276526

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

https://doi.org/10.1145/3276526
https://doi.org/10.1145/3276526
https://doi.org/10.1145/3276526

156:2 Pavol Bielik, Marc Fischer, and Martin Vechev

<ConstraintLayout>

<Button id="v1"

layout_width="match_constraint"

layout_marginTop="10dp"

constraintLeft_toLeftOf="v3"

constraintTop_toTopOf="parent"

.../>

<ProgressBar

...

</ConstraintLayout>

Layout Implementation

360dp (Galaxy Nexus)

v1 v2

v3 v4

User Interface Design

360dp (Galaxy Nexus)

v1 v2

v3 v4

v1 v2

v3 v4

384dp (Nexus 4)

Rendered Layout

Fig. 1. Main steps of user interface design: (left) the designer draws an image containing four viewsv1, . . . ,v4

(e.g., buttons, text views, etc.) how the application user interface should look like, (middle) the developer
implements the design for a given platform (e.g., Android), (right) the implementation is rendered on a range
of devices with different physical dimensions.

341dp (P4 Pro)

v1 v2

v3 v4

Views Rendered Outside of Screen

341dp (P4 Pro)

v1 v2

v3 v4

Overlaying Views

v1 v2

v3 v4

384dp (Nexus 4)

Views not Adjusted Horizontally

v1 v2

v3 v4

384dp (Nexus 4)

Inconsistent View Adjustment

Fig. 2. Illustration of common layout generalization errors, highlighted in red, on devices with different
physical dimensions than the device for which the layout was designed.

the same location on the screen as specified by the designer as shown in Fig. 1. For a developer,
the task of writing code to generate a given user interface layout is challenging due to the large
space of potential designs – many candidate programs can produce visually identical user interface
layouts yet some of these programs may fail to generalize well (e.g., when a screen is resized) or
have poor performance. Designing robust layouts is a critical factor especially in domains in which
layouts are expected to be used across a large number of different contexts. For example, each
Android application can be potentially installed on more than 15 000 devices with varying screen
resolutions and physical dimensions, all of which need to be considered by the developer during
layout implementation.
To illustrate common layout generalization errors, consider the layouts shown in Fig. 2. Given

the input design from Fig. 1 the developer can create multiple layouts that all produce the expected
results when rendered on Galaxy Nexus device but for various reasons do not generalize well to
devices with slightly different screen size such as Nexus 4 or P4 Pro. The leftmost example shows
that keeping the absolute view position and size unchanged on a smaller device often results in
drawing some of the views outside the screen. Shifting views to the left/right to adjust for the
smaller screen size is also not a solution as it can result in overlaying views on top of each other.
On a larger device the issue is reversed and not adjusting the views to the screen size leads to visual
errors due to resulting blank areas on the screen. The layout that generalizes well should adjust
the position of views v2 and v4 while also resizing v2. Note that deciding which views to adjust
and how is a hard problem that is context dependent – it depends on other components and their
location on the screen. This is where the developer experience is crucial, as it allows to manually
create a layout that generalizes to a large number of devices often using only a single example
provided by the designer.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:3

To address the gap between visual design and concrete layout implementation, several approaches
have been proposed. Given the complexity and time requirements of this task, a common method is
to outsource the task to a company that manually creates layouts from images for a high fee [apptype
2018; psd2android 2018; psd2mobi 2018; replia 2018]. Another approach is to try and automate part
of the process using better tool support for layout design [Zeidler et al. 2013a,b], generating user
interface sketches from real images [Swearngin et al. 2018] or hand drawings [Corrado et al. 2018],
sketch based code search for similar layouts [Reiss 2014] or generation of layouts for different
screen orientations [Zeidler et al. 2017].
Other approaches try to address the problem by generating layout code directly from images

[Beltramelli 2017; Chen et al. 2018; Huang et al. 2016; Nguyen and Csallner 2015]. Their main
focus is on the computer vision task required to process raw images and not on the actual layout
synthesis. Concretely, (i) they lack a language for expressing layouts [Huang et al. 2016; Nguyen
and Csallner 2015] or the language is simple and fails to express many layouts [Beltramelli 2017],
(ii) they either do not define a synthesis algorithm or it is implemented as part of a neural network
which is non-interpretable, lacks any formal guarantees and can even produce layouts that are
syntactically incorrect, and (iii) they return any layout regardless of whether it will generalize to
other contexts (i.e., multiple devices) or whether it would be acceptable to a developer.

Our Work. In this work we propose a system, called InferUI, which addresses the above limita-
tions in a principled way. The main idea is to phrase the problem of generating layouts as a program
synthesis from examples. Concretely, the examples considered in our work consist of a set of
absolute view positions, allowing for a natural way to express the desired design. Then, given
a set of views and their absolute positions, InferUI synthesizes a relational layout that renders
each view according to the absolute view positions. Crucially, we also consider the much harder
task of synthesizing a relational layout that generalizes well across multiple devices from an input
specification consisting of only a single device. As there can be a large space of possible solutions,
we introduce two additional mechanisms in order to guide the synthesizer towards the desired
goal: we present a set of robustness properties that a layout should satisfy (these also prevent
common layout generalization errors) and introduce a probabilistic model of constraints learned
from existing layouts written by developers (thus, giving preference to more natural layouts).

Main Contributions. Our InferUI system is based on the following technical contributions:

• A formal specification of a set of relational constraints from the latest, most expressive and
efficient Android ConstrainLayout.
• A new algorithm for synthesizing relational layouts on a single device. It succeeds in 100% of
cases, bridging the gap between design and layout implementation for one device.
• A new algorithm that synthesizes relational layouts and generalizes well to multiple devices.
Even when the given specification consist of only a single device, the layouts correctly
generalize 92% of views in a real world dataset of top 500 Google Play applications.
• A probabilistic model of constraints learned from a large set of layouts written by developers.
The model is used to guide the layout synthesis and enables solving complex real world
layouts in less than 3 seconds. Further, it allows synthesizing constraints that developers
prefer – it correctly predicts the exact constraints written by a developer in 62% of cases.
• A set of robustness properties that capture common visual errors caused by incorrect layouts.
We incorporate these properties as part of the synthesis problem, ensuring they are always
satisfied by the produced layouts. Further, we use the robustness properties to discover
several visual errors in existing Android applications.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:4 Pavol Bielik, Marc Fischer, and Martin Vechev

2 PRACTICAL BENEFITS OF OUR APPROACH
Our work carries a number of practical benefits when it comes to writing, maintaining and ensuring
correctness of relation layouts for Android, including: automation of end-user design, discovering
and fixing layout errors as well as porting existing layouts to improve performance. We briefly
elaborate on each of these next and discuss at a high level how our approach achieves these goals.

Automating End-User Design. Traditionally, the process of creating any type of application
(web, desktop, mobile, etc.) or content (text documents, images) consists of a design phase and an
implementation phase. In the design phase the user decides what the result should be whereas the
implementation puts the design into effect. In some domains it is possible to lift the implementation
to a level that is natural for the user to operate on and hides all internal complexity. For example,
consider the task of drawing an image using a stylus pen compared to writing the corresponding
vector image directly in SVG format. Even though both approaches represent the result in an
SVG format, using the stylus pen is natural, orders of magnitude faster and does not require any
technical knowledge about how SVG is implemented.

Unfortunately, even though there are currently almost 3 million Android applications, implement-
ing Android layouts still resembles drawing images by writing SVG format by hand. In particular,
Android layouts are represented using XML format where the user needs to know the semantics of
several layouts containers (e.g., RelativeLayout, LinearLayout, FrameLayout, etc.), all of their
attributes, and how they affect rendering the views on screen. Instead, in our work we hide the
implementation complexity of Android layouts from the user and synthesize layouts from a spec-
ification that is natural for the user to write – by giving examples of how the views should be
positioned on screen.

Avoiding and Finding Layout Errors. A key challenge in layout synthesis and a potential cause of
errors is failing to produce layouts that generalize well to a large set of different devices and screen
sizes. To address this challenge we developed and formalized a set of robustness properties that
good layouts should satisfy. Our synthesis algorithms ensure that all of these properties hold for the
generated layouts. Further, as we will demonstrate in the evaluation, these robustness properties
are useful beyond synthesis and can be also used to find errors in existing layouts.

Porting Layouts for Better Performance. A major reason why relational layouts were intro-
duced in Android is their rendering performance. Concretely, implementing a given layout using
ConstraintLayout can result in up to 20% faster rendering speed compared to previous layout
implementations (e.g., LinearLayout or RelativeLayout). However, as ConstraintLayout was
only recently released, more than 99% of existing layouts in Google Play Store applications are still
written using the old layout system. To benefit from this improved performance, developers have
no other choice but to manually rewrite their existing layouts. This not only requires considerable
amount of time but can introduces errors and visual artefacts. Instead, using our approach devel-
opers can automatically synthesize ConstraintLayout from their existing layouts. Crucially, the
layouts are synthesized not on a “best effort” basic but instead with provable guarantees that the
result will visually look the same on all of the supported devices.
To illustrate the reason behind the performance gains, consider the layout shown in Fig. 3

consisting of three views. Here, the designer would like the upper TextView to be centered with the
Image and TextView below it. The standard way to implement this on Android is to wrap the bottom
two views in a LinearLayout which positions them next to each other. Then the LinearLayout
can be centered with the TextView above. This results in deeply-nested layout hierarchies that are
slower to render. Instead, the ConstraintLayout is more expressive and enables centering a view,
in our case the upper TextView, in between two other views – the left edge of bottom Image and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:5

Application Design Flat Hierarchy (Our Work) Nested Hierarchy

wrapper view

Fig. 3. Same set of views expressed as flat vs nested layout hierarchy. The nested hierarchy uses additional
views which purpose is to group other views without being rendered. In contrast, the flat hierarchy uses more
expressive layout constraints that removed the need of wrapper views and results in faster layout rendering.

right edge of the bottom TextView. This makes the view hierarchy smaller and faster to render
by removing the unnecessary LinearLayout. Note that the added expressivity also means that
ConstraintLayouts are harder to synthesize.

Probabilistic Model of Constraints. Finally, our probabilistic model of constraints is a useful
component that can be incorporated in other applications. For example, a common issue with a
number of approaches that identify user interface components in images [Beltramelli 2017; Chen
et al. 2018; Huang et al. 2016] is that they produce noisy output. A possible approach to reduce this
issue would be to incorporate the probabilistic model as an additional term in the loss function,
effectively allowing the vision model to adjust the views into positions that produce likely layouts.

3 OVERVIEW
We now present an overview of our approach for synthesizing relational layouts.

Input Specification. In our work we hide the implementation complexity of the relational layouts
from the user and synthesize layouts from a natural input specification – the absolute view positions
on the screen. The position of each view is specified by two points in the Cartesian coordinate
system denoting its top left and bottom right corners respectively. The origin of the coordinate
system is located at the top left corner of (0, 0), the positive x-axis points towards the right and
the positive y-axis points down. Our approach is independent of the unit of measurement which
is generally pixels, or a platform specific equivalent such as density independent pixels (dp) used
in Android. As an example, consider the input specification of view v1 : (16, 20) → (50, 60) which
denotes that the top left corner of v1 is located at position (16, 20) and the bottom right corner at
position (50, 60). The coordinates and visualization of sample views v1,v2,v3 and v4 are shown in
Fig. 4 (left). All views are rendered on a canvas we will refer to as content frame ρ, which denotes
the allocated portion of the screen where views are rendered.

Relational Layout Synthesis. Given a set of views and their absolute screen position, the goal of
relational layout synthesis is to produce a layout that constraints the view size and position such
that each view is rendered according to that specification. Consider the constraints generated for
view v1 as shown in Fig. 4 (right). The horizontal constraint specifies that the left edge of view v1

should be positioned 10 pixels to the right of the left edge of the content frame ρ. This constraint
is expressed using a linear equation v1.xL = ρ.xL + 10 where v1.xL corresponds to left edge of
view v1 and ρ.xL corresponds to left edge of the content frame. The vertical constraint specifies
that the bottom edge of view v1 should be positioned 10 pixels above the top edge of view v3.
Further, both width and height of the view are 40 pixels. Overall, the output of the synthesis are set
of linear constraints that specify the view position relative to other views (denoted as arrows in
Fig. 4 bottom right) as well as constraints the specify the view size (i.e., its height and width), both
exported as the corresponding source code to be used directly by the developer.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:6 Pavol Bielik, Marc Fischer, and Martin Vechev

360dp

v1 v2

v3 v4

Device Screen Visualization

Layout Synthesizer
(Section 5, 6, 7)

Robustness
Properties
(Section 6)

Constraints
Formalization
(Section 4)

Input:
View Coordinates

Output:
Android Constraint Layout

Our Work: InferUI
Relational Layout Synthesis

Probabilistic
Model

(Section 7)

List of
Devices

(Nexus 4, P4 Pro,
Galaxy Nexus, ...)

Synthesized Constraints

(Optional)
User Feedback
(Section 6.2)

v1 v2

v3 v4

360dp (Galaxy Nexus)

v1 v2

v3 v4

341dp (P4 Pro)

Horizontal Position: v1 .xL = ρ .xL + 10
Aling Left Edge of v1 to Left Edge of ρ + Margin 10

Vertical Position: v1 .yB = v3 .yT − 10
Align Bottom Edge of v1 to Top Edge of v3 - Margin 10

Size:
(
v1 .xL + 40 = v1 .xR

)
∧
(
v1 .yT + 40 = v1 .yB

)
Fixed width 40dp, Fixed height 40dp

<Button

layout_width="match_constraint"

layout_marginLeft="10dp"

constraintLeft_toLeftOf="..

Available Screen Space

View Coordinates

Views Rendered According to Constraints on Multiple Devices

ρ : (0, 0) → (360, 160)

v1 : (16, 20) → (50, 60)

v2 : (70, 20) → (344, 60)

v3 : (16, 80) → (146, 140)

v4 : (198, 80) → (344, 140)

v = (v1, v2, v3, v4)

Fig. 4. Overview of our approach for relational layout synthesis which given a set of views and their absolute
positions on the screen synthesizes a layout that renders each view according to that specification. Crucially,
the synthesized layout generalizes to a large set of devices on which an application can run in practice.

Once the layout is synthesized it is used to render the views inside of a content frame with
different size. The size of the content frame can change for several reasons including using the
application on a device with different physical size, using the application in a different mode (i.e.,
full screen, split screen) or simply reusing the layout in a different application context. As an
example, Fig. 4 (bottom right) shows rendering the synthesized layout on a narrower device. In
this case, the synthesized layout must correctly render the views on a smaller screen, which can
be achieved by moving views v3 and v4 closer to each other, decreasing the width of view v2 and
keeping the view v1 unchanged.

Challenge: Synthesizing Layouts that Generalize across Devices. Creating layout synthesis algo-
rithms that can produce real-world layouts is a hard problem. The first challenge is that the synthesis
problem is largely underspecified. Even though our input is a specification for only a single device
and application context, in practice, the same layout needs to be rendered potentially on more
than 15 000 Android devices with ≈100 different density independent screen sizes1. Requiring the
user to provide and maintain input specifications for all of them is infeasible yet highly desirable –
suitable input specification can prevent many generalization errors as illustrated in Fig. 2.

This Work. Our goal is to synthesize a layout based on a single specification that generalizes to
multiple devices and contexts. To address this challenge we use a combination of several techniques.
Firstly, we design a set of robustness properties that capture common generalization mistakes
that developers make and consider them during synthesis. Second, we take advantage of existing
layouts written by developers and which implicitly capture the constraints that generalize well. For
this purpose, we collect a dataset of layouts and learn a probabilistic model of constraints that is
used to guide the synthesizer. That is, we produce the most likely layout according to the learned
probabilistic model that satisfies the input specification and all our robustness properties. Note
1We consider two devices to have the same screen size if their dimensions in pixels are the same (although their physical
dimensions might be different). Furthermore, two devices are considered to have the same density independent screen size
if their screen sizes contain the same number of density idenpendent pixels used in Android. The statistics are obtained
from the Google Developer Console: https://developer.android.com/distribute/index.html

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

https://developer.android.com/distribute/index.html

Robust Relational Layout Synthesis from Examples for Android 156:7

xL xR

yT

yB

ybasel inetextView = ⟨xL,xR ,yT ,yB ,ybaseline ∈ Z
≥0⟩

Fig. 5. Definition of a view consisting of five handle points used to relate views to each other (left) and
illustration of the handle points on a rendered view (right).

that once the layout is synthesized we directly output the corresponding source code required to
implement the layout on Android platform.
As a result, we are able to synthesize layouts that correctly generalize to more than 92% of

the views across multiple devices from a single input specification. Finally, if a view does not
generalize according to the user expectations we allow the user to specify the desired view position
as additional input and re-run the synthesizer.

Challenge: Scaling the Synthesis to Real World Layouts. The second challenge we address is
scaling the synthesis algorithm to real world layouts. In particular, given the expressiveness of
ConstraintLayout, searching directly for a layout that satisfies the input specification and all of
our robustness properties does not scale. To address this issue we use the learned probabilistic
model of constraints to guide the synthesis search. This allows us to synthesize complex real world
layouts in less than 3 seconds.
In what follows we describe our approach to layout synthesis. We start by formalizing the

semantics of relational layout constraints in Android (Section 4) together with description of how
the layout constraints are solved in order to render a given layout on a device (Section 4.1). Then we
introduce our synthesis algorithm for single device (Section 5) which we later generalize to multiple
devices (Section 6). Finally, we make both algorithms scalable for complex real world layouts by
learning a probabilistic model of constraints that is used to guide the synthesis (Section 7).

4 CAPTURING RELATIONAL CONSTRAINTS
In this section, we define a set of relational constraints that capture the semantics of Android’s
ConstraintLayout.

Views, Handle Points and Relations. We define a view as a tuple of five handle points corresponding
to left, right, top, bottom edges and text baseline (the vertical position of an imaginary line upon
which a line of text rests), illustrated in Fig. 5. Note that the text baseline is defined only for views
containing text. For a given view A, we denote these handle points as A.xL , A.xR , A.yT , A.yB and
A.ybaseline . The handle points allow us to specify relational constraints such as: left edge of view A
should be aligned to right edge of view B. That is, we can relate views via their handle points.

Relational Constraints. To relate views via their handle points, three classes of constraints exist –
constraints for relative, centering and circular positioning. We define a constraint to specify the
horizontal position of a view as the following tuple:

Constraint = ⟨th ∈ 𝒞, A,B,C ∈ View,mL,mR ∈ Z
≥0,bh ∈ R

[0,1],α ∈ Z[0,360), r ∈ R⟩

where th is the type of the constraint, A,B and C are views related to each other andmL,mR ,bh ,α
and r are constants corresponding to the left margin, right margin, bias, angle in degrees and
distance. Note that constraints typically use only a subset of the constants and views depending

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:8 Pavol Bielik, Marc Fischer, and Martin Vechev

Table 1. Layout constraints that specify the horizontal position (left and right edges) of view A relative to
other views (B and/or C). Vertical constraints for top and bottom edges (not shown) are defined analogously.

Relative Positioning Constraints
ℛLL : Align Left of A to Left of B + Margin

A.xL = B.xL +mL

ℛLR : Align Left of A to Right of B + Margin
A.xL = B.xR +mL

ℛRL : Align Right of A to Left of B + Margin
A.xR = B.xL −mR

ℛRR : Align Right of A to Right of B + Margin
A.xR = B.xR −mR

Baseline Constraints
ℛB : Align Baseline of A to Baseline of B

A.ybaseline = B.ybaseline

Dynamic View Size Centering Constraints
𝒟LL : Center A between Left of B and Left of C + Margin

A.xL = B.xL +mL ∧A.xR = C .xL +mR

𝒟LR : Center A between Left of B and Right of C + Margin
A.xL = B.xL +mL ∧A.xR = C .xR +mR

𝒟RL : Center A between Right of B and Left of C + Margin
A.xL = B.xR +mL ∧A.xR = C .xL +mR

𝒟RR : Center A between Right of B and Right of C + Margin
A.xL = B.xR +mL ∧A.xR = C .xR +mR

Circular Constraints
ℛC : Align Center of A to Center of B at an Angle + Distance

A.xL +A.xR = 2r · sin(α) + (B.xL + B.xR)

Fixed View Size Centering Constraints
ℱLR : Center A between Left of B and Right of C + Margin + Bias

(1 − b) · A.xL + b · A.xR = (1 − b) · (B.xL +mL) + b · (C .xR −mR) ∧
(A = B ∧A = ContentFrame) ⇒ (mL ≤ A.xL − B.xL ∧mR ≤ A.xR − B.xR)

ℱRL : Center A between Right of B and Left of C + Margin + Bias
(1 − b) · A.xL + b · A.xR = (1 − b) · (B.xR +mL) + b · (C .xL −mR) ∧
(A = B ∧A = ContentFrame) ⇒ (mL ≤ A.xL − B.xL ∧mR ≤ A.xR − B.xR)

ℱLL : Center A between Left of B and Left of C + Margin + Bias
(1 − b) · A.xL + b · A.xR = (1 − b) · (B.xL +mL) + b · (C .xL −mR) if B , C
(1 − b) · A.xL + b · A.xR = (1 − b) · B.xL + b ·C .xL ∧mL = 0 ∧mR = 0 if B = C

ℱRR : Center A between Right of B and Right of C + Margin + Bias
(1 − b) · A.xL + b · A.xR = (1 − b) · (B.xR +mL) + b · (C .xR −mR) if B , C
(1 − b) · A.xL + b · A.xR = (1 − b) · B.xR + b ·C .xR ∧mL = 0 ∧mR = 0 if B = C

on the constraint type (which also specifies the given constant semantics). The constraints that
specify vertical position are defined analogously, except that they use vertical margins and bias
(mT ,mB ,bv) instead of horizontal margin and bias (mL,mR ,bh). We now formally define all of
the constraints as shown in Table 1, and illustrate them visually in Fig. 6. In total, there are 26
different types of constraints 𝒞 that can be applied to a given view in order to specify its location
as supported by ConstraintLayout version 1.0.2.

Relative Positioning Constraints. A core component in relational layout is constraining the position
of a given view relative to another. This can be done either horizontally (e.g., view A is to the right
of B) or vertically (e.g., view A is above B). When specifying relative view position we use the
handle points corresponding to view edges as defined earlier. For example, the constraintℛLL from
Table 1 specifies that the left edge of view A should be aligned to the left edge of view B which
results in the constraint A.xL = B.xL +mL . Vertical relative constraints are defined analogously
to horizontal constraints. The only exception are baseline constraints ℛB which can be used to
constraint only the vertical position of a view and do not have a corresponding horizontal version.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:9

Left of A to Right of B + Margin

B A
mR = c

Left of A to Right of B

B A

Fixed View Size Centering Constraints

B A C
b=0.5

mL=0 mR =0

B A C
b=0.35

mL=0 mR =0

Dynamic View Size Centering Constraints

B A C
mL=40 mR =40

B A C
mL=10 mR =10

Fig. 6. Illustration of selected relational constraints as formalized in Table 1.

Fixed View Size Centering Constraints. In addition to relating pairs of views using relative position
constraints it is also possible to relate view triples. A typical example is horizontally centering
a view on the screen as illustrated in Fig. 6. Here, we would like to express that view A should be
horizontally centered in between views B andC instead of relating it only to the left (or right) view
using a margin. For this purpose, we define centering constraints as shown in the Table 1. Without
margins, the default bias, b = 0.5, view A is always centered in between the corresponding handle
points of views B and C (note that B and C can refer to the same view). The margins have the same
semantics as in relative positioning constraints, only that now there are both left and right margins
(or top and bottom).

The bias attribute b ∈ R[0,1] controls the preference for positioning in between views B and C .
The intuition is that bias specifies where to position the view on the line segment between both
handle points. For instance, for b = 0.35, the view will be positioned at 35% of the line segment
length as illustrated in Fig. 6. If the bias is set to the minimum (i.e., b = 0) the view A is positioned
directly to the right of B. Note that even if bias is set to minimum (or maximum) the margins still
apply. That is, the centering constraint with b = 0 andmL = 10 will position view A at distance 10
from the right edge of view B.

Finally, in order to accurately model the semantics of Android’s layout system implementation
we strengthened the constraints. In particular, for constraints ℱLL and ℱRR the margins are ignored
if view A is centered with a single handle point (i.e., if B = C). Further, for constraints ℱLR and
ℱRL we discovered a bug in the Android layout solver that results in rendering view A incorrectly
(its position is shifted by one pixel). This happens in case view A is related to the content frame
(a view representing available device screen size) and the margins are larger than its distance from
the content frame.

Circular Constraints. Circular position constraints allow relating the center of two views at an
angle α and a distance r . Using circular constraints we can easily express that two views are related
at an angle α = 45° without having to compute the corresponding margins manually.

Dynamic View Size Centering Constraints. So far all the constraints assumed that the width and
height of the view are known. This is because in order to render the view on the screen we need to
compute the position of all of its edges and not only one of them or its center. To support dynamic
view sizes the constraint has to relate both horizontal (or vertical) handle points. For example, the
effect of constraint 𝒟RL : A.xL=B.xR+mL ∧A.xR =C .xL+mR withmL=10,mR =10 is that view A
is rendered between right and left edges of views B and C respectively while spanning the whole
space in between them (except for margins) as illustrated in Fig. 6.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:10 Pavol Bielik, Marc Fischer, and Martin Vechev

ψlayout (ρ ∈View,c ⊂Constraint , s ⊂Size) = ϕposit ion ∧ ϕsize ∧ ϕconstraints

ϕposit ion
def
=
(
x0
L = ρ.xL

)
∧
(
x0
R = ρ.xR

)
ϕconstraints

def
=

|c |∧
i=1
⟦ci ⟧ ϕsize

def
=

|s |∧
i=1




x iL + s
i .width = x iR if si .t ih = Fixed

x iR − x
i
L ≥ 0 otherwise

Fig. 7. Functionψlayout that specifies absolute view positions from relational layout constraints c and view
sizes s (where |c | = |s |) by encoding this problem as a set of linear equations.

View Size. The view size needs to be specified in addition to relative, circular and fixed size
centering constraints in order to compute the absolute positions of all view handle points. The
view size is defined as follows:

Size = ⟨th , tv ∈ {Fixed, MatchConstraint},width,heiдht ∈ Z
≥0⟩

that is, view size is either fixed (denoted as Fixed) in which case the view size is a constant or
dynamically computed as specified by the constraints (denoted as MatchConstraint). Note that it is
allowed for a view to have one dimension fixed while the other dimension is computed dynamically.

4.1 Layout Constraint Solving
Having formalized the relational constraints and view sizes we now describe how they are used
to compute absolute view positions. This will be a necessary component for synthesizing layouts
that generalize to multiple devices presented in Section 6. Given a set of views with associated
constraints and view sizes, we compute the absolute view positions in two steps: (i) we encode view
constraints and view sizes as a set of linear equations (formalized in Table 1) where free variables
correspond to view handle points, and (ii) we find the satisfying assignment to the free variables by
solving the resulting linear equations. In our case, this assignment captures the absolute positions
of each view’s handle points corresponding to the left, right, top and bottom edges. Note that
because all of our constraints are relational (i.e., they only specify the position of a view relative to
other views), one may obtain many different satisfying assignments some of which will not match
the desired absolute view positions. This is undesirable as it results in non-deterministic view
position. Because of this, a so called content frame (typically spanning the available screen size) is
included as an additional view with fixed absolute coordinates. Then, if all views are transitively
related to the content frame and the relations do not contain cycles, the resulting system of linear
equations has exactly one satisfying assignment. Throughout the paper, when indexing views we
use ρ or index zero (e.g., v0) to refer to the content frame and indices 1 and above when referring
to other views. Further, for all of our algorithms we simplify the presentation and remove clutter
by encoding only the horizontal constraints (the vertical constraints are defined analogously).

Encoding Relational Constraints. Fig. 7 defines how to encode relational constraints as a conjunc-
tion of linear equations. We have three kinds of equations: ϕposit ion , ϕsize and ϕconstraints . Here,
ϕposit ion specifies the absolute position of the content frame. As this position is known, we simply
assign the concrete values to the content view handle points. Equation ϕsize restricts the view size.
If the size is fixed it is enforced using x iL + s

i .width = x iR which specifies that the distance between
left and right handle points is equal to the width of the view. If the size is computed dynamically
we only enforce that it is non negative. Finally, ϕconstraints encodes the actual constraints over the
view handle points. We use ⟦ci ⟧ to denote evaluation of constraint ci which returns the logical
formula associated with ci according to its definition from Table 1.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:11

Input: Constraints & Size

c1
h = ⟨th = ℛLL,A = v

1,B = v0,mL = 10⟩
s1
h = ⟨th = Fixed,width = 260⟩

c2
h = ⟨th = 𝒟LR ,A = v

2,B = v1,C = v0,mL=mR =10⟩
s2
h = ⟨th = MatchConstraint⟩

Constraint System

ψlayout ((0, 720), (c1
h ,c

2
h), (s

1
h , s

2
h))

ϕconstraints
def
= x1

L = x0
L + 10 ∧

x2
L = x1

R + 10 ∧ x2
R = x0

R − 10

ϕposit ion
def
= x0

L = 0 ∧ x0
R = 720

ϕsize
def
= x1

L + 260 = x1
R ∧ x

2
R − x

2
L ≥ 0

Solution
A satifying assigment to x 1

L, x
1
R, x

2
L, x

2
R in ψlayout

v1 v2x1
L = 10,x1

R = 270 x2
L = 280,x2

R = 710

Fig. 8. An example illustrating how the relational constraints are encoded as a set of linear equations as
specified byψlayout . The solution of the formula specifies the absolute position of views on the screen.

Example. Fig. 8 illustrates the encoding of the relational layout constraints according to Fig. 7 on
a simple example consisting of two views. The constraint c1

h specifies that left edge of the first view
is to the right of left edge of the content frame with margin 10. The constraint c2

h specifies that the
second view should be positioned between the right edges of the first view and the content frame.
The width of the first view is fixed while the width of the second view is computed dynamically
allowing it to span all of the remaining available space on the screen. By solving the resulting
formula we can compute the absolute positions of all views as shown at the bottom of Fig. 8.

5 SINGLE DEVICE RELATIONAL LAYOUT SYNTHESIS
So far we defined how to compute absolute view positions given relational constraints (Section 4.1).
We now discuss the inverse problem of generating these constraints given the absolute view
positions and sizes (as provided by a user). In particular, for each viewwe are interested in generating
one constraint that controls its horizontal position and one constraint for its vertical position. We
need at least one constraint (for either axis) as otherwise the view position is unconstrained
and cannot be computed. Moreover, exactly one constraint is also sufficient because if multiple
constraints are specified then they are either redundant or unsatisfiable.

Problem Statement. The layout synthesis problem is defined as follows:
Input: A setv ⊂View of N views with specified absolute positions

on the screen defining where the views should be rendered.
A content frame ρ ∈ View defining the screen size.

Output: A set of N view sizes s ⊂Size and N horizontal and vertical
constraints ch ,cv ⊂ Constraint (one for each input view)
wherev |= ψlayout (ρ,ch ,cv , s).

That is, we need to define a synthesizer that for a given screen size ρ and absolute positions
of all views finds constraints and view sizes whose solution (as specified byψlayout) matches the
input. Such a synthesizer would then automatically compute the constraints and view sizes that
a developer has to currently write by hand. In the next section we will show how to extend the
synthesizer so that it generalizes across multiple screen sizes (Section 6 and Section 7) and develop
a technique to make the synthesizer scale to a large number of views (Section 7).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:12 Pavol Bielik, Marc Fischer, and Martin Vechev

ψsinдle_syn (ρ ∈View,v ⊂View) = ϕposit ion ∧ ϕvalid ∧ ϕconstraints ∧ ϕacyclic

ϕposit ion
def
=
(
x0
L = ρ.xL

)
∧
(
x0
R = ρ.xR

)
∧
*.
,

|v |∧
i=1

x iL = v
i .xL ∧ x

i
R = v

i .xR
+/
-

ϕvalid
def
=

|v |∧
i=1

mi
L ≥ 0 ∧mi

R ≥ 0 ∧ 0 ≤ bih ≤ 1 ∧ 0 ≤ α i < 360 ∧ r i ≥ 0

ϕconstraints
def
=

|v |∧
i=1

*.
,

|𝒞 (v i ,v,ρ) |∧
k=0

дik ⇒ ⟦c
i
k ⟧

+/
-
∧ дi0 + · · · + д

i
|𝒞 (v i ,v,ρ) |

= 1

ϕacyclic
def
= (ρ .d = 0) ∧ *.

,

|v |∧
i=1

vi .d >0 ∧
|𝒞 (v i ,v,ρ) |∧

k=0
дik ⇒ vi .d =




⟦cik .B⟧.d + 1 if t ih ∈ ℛ
⟦cik .B⟧.d + ⟦c

i
k .C⟧.d + 1 otherwise

+/
-

Fig. 9. Synthesis algorithm that given a set of absolute view positions v and a content frame ρ computes
suitable constraints and view sizes that render the views at the same absolute positions as specified byv .

Relational Layout Synthesis. Our synthesis algorithm is shown in Fig. 9. We encode the problem
as a logical formulaψsinдle_syn ranging over boolean, integer and real valued variables. A model of
ψsinдle_syn determines which constraints and view sizes should be applied such that we solve the
problem statement above. We divide the formula into four parts ϕposit ion , ϕvalid , ϕconstraints and
ϕacyclic that are described next.

Here, ϕposit ions encodes the input specification by setting the handle points based on the input
viewsv and content frame ρ. Then, ϕvalid defines domain of constants which are allowed to be
used by the (to be synthesized) relational constraints. In particular, marginsmL,mR and distance r
have to be non-negative, bias bh has to be between zero and one, and the angle is a valid degree.
The formula ϕacyclic encodes that constraint relations are acyclic. Acyclic relations are required as
otherwise the constraints do not specify a unique solution when solving for absolute view positions
(since views depend transitively on themselves). To encode acyclic relations we assign an integer
variablevi .d > 0 to each viewvi . The intuition behind eachvi .d is that it captures distance from
the content frame, where the content frame has a distance of zero (i.e., ρ.d = 0). Then, the distance
of a view is defined as one plus the sum of distances of the views it relates to (where ⟦cik .B⟧ is used
to denote view B associated with constraint cik). Such encoding efficiently disallows cycles since
introducing a cycle will result in an unsatisfiable assignment to distance variables.

Theϕconstraints encodes the constraints for each view. Let 𝒞 (vi ,v, ρ) denote a set of all admissible
constraints for a given viewvi . This set is obtained by instantiating each constraint type (defined
in Table 1) with view vi as source (i.e., A = vi) and all the other views including content frame
as possible targets (i.e., B,C ∈ {ρ ∪v \ {vi }}). We then associate a boolean variable дik with each
admissible constraint cik for that view and add the implication дik ⇒ ⟦c

i
k ⟧. The interpretation of дik

is such that if it is true, the constraint cik is activated, and will be returned as part of the solution.
Finally, we enforce that for each view exactly one horizontal constraint is synthesized by restricting
the sum of all дik for a given viewvi to be equal to 12.

2In our implementation we encode this constraint using PbEq function, which is an optimized implementation of pseudo-
boolean relations of type k1 ∗ p1 + · · · + kn ∗ pn = k provided by Z3 Solver. In our case k1, . . . , kn = 1 and k = 1.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:13

ψmulti_syn (ρ ∈View,d ⊂View,v ⊂View) = ψsinдle_syn (ρ,v) → ⟨c, s⟩ ∧

|d |∧
k=1

ψдen (dk ,v,c, s)

ψдen (d,v,c, s)
def
= vd |= ψlayout_syn (d,v,c, s) ∧

ϕinside_screen (d,vd) ∧ ϕpixel_per f ect (vd) ∧ ϕpreserve_aspect_ratio (v,vd) ∧

ϕpreserve_order (v,vd) ∧ ϕpreserve_center inд (v,vd) ∧ ϕpreserve_marдins (v,vd)

ψlayout_syn (d ∈View,v ⊂View,c ⊂Constraint , s ⊂Size) = ϕposit ion ∧ ϕsize ∧ ϕconstraints

ϕposit ion
def
=
(
v0
d .xL = d .xL

)
∧
(
v0
d .xR = d .xR

)
ϕsize

def
=

|v |∧
i=1

*.
,

|𝒞 (v i ,v,ρ) |∧
k=0

дik ⇒



vi .xR −v
i .xL = v

i
d .xR −v

i
d .xL if ci .t ih < 𝒟

true otherwise
+/
-

ϕconstraints
def
=

|v |∧
i=1

*.
,

|𝒞 (v i ,v,ρ) |∧
k=0

дik ⇒ ⟦c
i
k ⟧

d+/
-

Fig. 10. Synthesis algorithm that ensures that the synthesized constraints generalize to a set of devices d .

View Size. Note that the synthesis algorithmψsinдle_syn does not depend on the view size. Instead,
the view size can be determined after a satisfying assignment to the synthesis formula is found.
Concretely, if the synthesized constraint is of type 𝒟LL,𝒟LR ,𝒟RL or 𝒟RR then the view size is of
type MatchConstraint and of type Fixed otherwise. This is possible because during synthesis,
the view size is known as the inputv already specifies all handle points.

6 ROBUST LAYOUT SYNTHESIS: GENERALIZING LAYOUTS TO MULTIPLE DEVICES
In this section we build upon the synthesis algorithm ψsinдle_syn from Section 5 and show how
to extend it to synthesize constraints that generalize across multiple devices. This functionality is
extremely useful as in practice developers have to consider a large number of devices with different
screen sizes and resolutions on which an application might be rendered. For example, there are more
than 15 000 device models with almost 100 different screen sizes (even after an adjustment using
density independent pixels) that one needs to consider when developing an Android application.
Compared toψsinдle_syn which takes only a single device ρ as input, the algorithm to support

multiple devices takes a list of devices d ⊂ View to be considered (or alternatively, a maximum
allowed resize ratio of the device ρ). However, note that the input specification still consists of
absolute view positionsv only for a single device ρ and not for all the devices d . As a result, the
synthesis problem is severely underspecified as we do not have any specification for the additional
devices. We address the under specification issue using two techniques: (i) by designing a set of
properties that “good layouts” should satisfy (described in this section), and (ii) by learning from
a large set of layouts already written by developers (described in Section 7).

Our synthesis algorithmψmulti_syn supports multiple devices and is shown in Fig. 10. It consists
of three parts. First, using ψsinдle_syn , we compute formulas for c and s that satisfy the input
specification v on device ρ. Second, using c and s from the first step we produce a view layout
vd on each device d , that is, vd |= ψlayout_syn (d,c, s). Finally, for each device we check that the
viewsvd satisfy a set of robustness properties. All three steps are in fact encoded as a single logical
formula, the solution of which specifies the desired constraints and view sizes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:14 Pavol Bielik, Marc Fischer, and Martin Vechev

LG Nexus 4

Overlaying Views
[Amigo 2018]

User Constraints

Alcatel POP S3

Synthesized Constraints

Alcatel POP S3

LG Nexus 4

Centering
[Asobimasu 2018]

Samsung Galaxy Nexus

BenQ Agora 4G Lite

LG Nexus 4

Views Rendered Outsize of Screen
[Candid 2018]

Alcatel POP S3 LG Nexus 4 Alcatel POP S3

Inconsistent Margins
[FBook 2018]

Fig. 11. Illustration of visual errors that arise from using applications on different physical devices that
designed for. In these examples, the reference device with the correct design is LG Nexus 4.

Before formalizing the robustness properties we describe the encoding ofψlayout_syn . The idea
behind ψlayout_syn is similar to ψlayout defined in Fig. 7 except that now our goal is to encode
both layout and synthesis within a single logical formula. For this purposeψlayout_syn introduces
a fresh set of free variablesvd denoting views rendered on a device d . Then, it reuses the boolean
variables дik defined in ψsinдle_syn to restrict the size and apply constraints over vd (here ⟦cik ⟧

d

denotes evaluating the constraint cik over a set of viewsvd).

6.1 Robustness Properties
We designed a set of general properties that good layouts should satisfy and that prevent common
errors made by developers. Encoding these properties as part of the synthesis formula allows us to
synthesize layouts that generalize well to multiple devices even though their input specification is
not available. As an example, consider Fig. 11 which shows four existing applications rendered on
a device they were designed for (LG Nexus 4) as well as on other devices. Using the applications on
a device with smaller height than designed leads to overlaying two views containing text and image
for the Amigo application, rendering a button partially out of the screen in the Candid application
as well as visual artefacts caused by stretching common margins used between views in the FBook
application. Similarly, using the application on a device with smaller/larger width than designed
can lead to errors as the one found in the Asobimasu application. In the remainder of the section
we describe and formalize the generalization properties required to avoid common layout errors
(including those shown in Fig. 11) and how we encode those inψmulti_syn .

Preserve Order. The ϕpreserve_order property ensures that when viewsv are rendered on a dif-
ferent device, their relative order stays the same. That is, if a view A is to the left of view B on
a device ρ, we expect the same to hold for all devices. Concretely, we add constraints for each

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:15

pair of view handle points that ensure their ordering is preserved. This property enforces that
a layout producing the visual error in Amigo is not allowed. Instead, the synthesized constraints
will prevent overlaying the views and move the application logo and name upwards instead of
downwards on a smaller screen (shown in Fig. 11).

ϕpreserve_order (v,vd)
def
=
∧ 



aliдnedLL (v
i ,v j ,vi

d ,v
j
d) ∧ aliдnedLR (v

i ,v j ,vi
d ,v

j
d)

aliдnedRL (v
i ,v j ,vi

d ,v
j
d) ∧ aliдnedRR (v

i ,v j ,vi
d ,v

j
d)

������

∀i, j .

0≤ j < i ≤N

}

aliдnedLR (v
i ,v j ,vi

d ,v
j
d)

def
=




vi
d .xL = v

i
d .xR ifvi .xL = v

i .xR

vi
d .xL < v

i
d .xR ifvi .xL < v

i .xR

vi
d .xL > v

i
d .xR ifvi .xL > v

i .xR

Preserve Margins. A standard design technique is to layout two views within a certain margin of
each other. For example, views are aligned to the screen border typically with a margin of 16 pixels
and the spacing between two views is typically 8 pixels (or a multiple of 8). The ϕpreserve_marдins
property ensures that such margins are preserved across multiple devices. In our implementation
the margins we preserve, denotedℳ, correspond to the most commonly used values by developers.

ϕpreserve_marдins (v,vd)
def
=
∧




vi .xL−v
j .xL=v

i
d .xL−v

j
d .xL if ���v

i .xL−v
j .xL

���∈ℳ

vi .xR−v
j .xL=v

i
d .xR−v

j
d .xL if ���v

i .xR−v
j .xL

���∈ℳ

vi .xL−v
j .xR =v

i
d .xL−v

j
d .xR if ���v

i .xL−v
j .xR

���∈ℳ

vi .xR−v
j .xR =v

i
d .xR−v

j
d .xR if ���v

i .xR−v
j .xR

���∈ℳ

��������������

∀i, j .

j , i

1≤ i ≤N
0≤ j ≤N




Preserve Centering. The ϕpreserve_center inд property ensures that when viewsv are centered on
device ρ, they will also be centered on all the other devices in d . Note that for this property we
need to consider all triples of views that can be centered.

ϕpreserve_center inд (v,vd)
def
=
∧ 



centeredLL (v
i
d ,v

j
d ,v

k
d) if centeredLL (vi ,v j ,vk)

centeredLR (v
i
d ,v

j
d ,v

k
d) if centeredLR (vi ,v j ,vk)

centeredRL (v
i
d ,v

j
d ,v

k
d) if centeredRL (vi ,v j ,vk)

centeredRR (v
i
d ,v

j
d ,v

k
d) if centeredRR (vi ,v j ,vk)

�������������

∀i, j,k .

j , i

k , i

1 ≤ i ≤ N

0≤ j,k ≤N




centeredLR (v,v
i ,v j)

def
=
(
(v .xL +v .xR)/2 = (vi .xL +v

j .xR)/2
)

Preserve Aspect Ratio. The ϕpreserve_aspect_ratio property ensures that the view aspect ratio (the
ratio of width to the height) is preserved across all devices. However, this property applies only to
those views which have one of the standard aspect ratios as defined below.

ϕpreserve_aspect_ratio (v,vd)
def
=

|v |∧
i=1

ar (vi) = ar (vi
d) if ar (v

i) ∈ {
16
9 ,

3
2 ,

4
3 ,

1
1 ,

3
4 ,

2
3 }

ar (v)
def
=
v .xR −v .xL
v .xB −v .xT

Pixel Perfect. We ensure that the synthesized constraints take into account the physical limitations
of the device – the fact that device screens consist of a discrete number of pixels. To prevent rounding

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:16 Pavol Bielik, Marc Fischer, and Martin Vechev

(which can introduce visual artefacts) we ensure that only solutions which do not require rounding
are produced by restricting the handle points representation to be non-negative integers.

ϕpixel_per f ect (vd)
def
=

|vd |∧
i=1

vi
d .xL ∈ Z

≥0 ∧vi
d .xR ∈ Z

≥0

Inside Screen. The ϕinside_screen property checks that all views are rendered fully inside the
device screen. This can be achieved by constraining each view handle point.

ϕinside_screen (d,vd)
def
=

|vd |∧
i=1

(
d .xL ≤ vd .x

i
L

)
∧
(
vd .x

i
R ≤ d .xR

)
6.2 Incorporating User Feedback
As the synthesis problem is under specified, it is possible that even after satisfying all robustness
properties, the synthesized layout is not the one the designer had in mind. It is therefore important
that a designer can provide feedback and re-run the layout synthesis. As our synthesis algorithm is
encoded as a logical formula, it naturally allows specifying a wide range of additional properties to
be satisfied. However, instead of requiring the designer to write logical formulas we can simply
render the layouts and allow the user to modify the absolute position and size of the rendered
views. Then, the views which were changed are added as an additional input specification.

Summary. In this sectionwe presented a synthesis algorithm that produces layouts that generalize
well on multiple devices while crucially requiring an input specification only for a single device. To
achieve this, the key idea is to design a set of properties satisfied by layouts that generalize well
and encode them as a part of the synthesis task. Further, the properties are encoded in a modular
way as logical formulas that allow the user to easily add more constraints if necessary.

7 SCALING LAYOUT SYNTHESIS WITH A PROBABILISTIC CONSTRAINTS MODEL
In this section we present our final version of the synthesis algorithm. We extend ψmulti_syn in
a way that results in: (i) a scalable algorithm that can synthesize real world layouts in less than
a second, and (ii) an improved ability to generalize across multiple devices by taking into account
constraints that are likely to be written by developers.

Key Challenge I: Scalability. As we will show in our evaluation, state-of-the-art SMT engines do
not scale to solving the synthesis formulaψmulti_syn directly. This is because the formula size is
cubic in the number of viewsv and quickly becomes intractable to solve for all but very small sizes.
The main scalability bottleneck is that both synthesis algorithmsψsinдle_syn andψmulti_syn consider
all admissible constraints for each view, out of which only two are synthesized – one horizontal
and one vertical constraint. The key idea that enables us to make synthesis scale is that instead of
considering all admissible constraints, we only consider those that are likely to make the synthesis
formula satisfiable. That is, we are interested in learning a model F : Constraint → Constraint
which takes as input all admissible constraints and returns only a subset of them. In the extreme
case, F returns exactly the two constraints for each view that make the synthesis formula satisfiable,
effectively solving the synthesis problem. Although creating such a perfect model is too expensive,
we will show how to learn a model that is close to optimal (in our evaluation we return only
5 constraints) yet is very fast to compute. This allows us to significantly reduce the number of
constraints considered by the synthesizer and efficiently generate complex real world layouts.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:17

ψmulti_syn+дuided (ρ ∈View,d ⊂View,v ⊂View) = max∑|v |
i=1 score

i
ψmulti_syn (ρ,d,v)

ϕconstraints
def
=

|v |∧
i=1

*.
,

|F (𝒞 (v i ,v,ρ)) |∧
k=0

дik ⇒
(
⟦cik ⟧ ∧ score

i = P (cik ,v)
)+/
-
∧ дi0+ · · · +д

i
|F (𝒞 (v i ,v,ρ)) |

= 1

Fig. 12. Synthesis algorithmψmulti_syn+дuided guided by a probabilistic model of constraints which selects
constraints with the highest score that satisfy the synthesis formulaψmulti_syn .

Key Challenge II: Natural Constraints. In Section 6 we defined a set of general properties which
every layout should satisfy. However, for many designs, multiple options may be available and
a designer has to select one of these based on their intentions. Although our model supports
supplying additional constraints (described in Section 6.2) our goal is to reduce the amount of
feedback the user needs to provide in order to synthesize the desired layout. For this purpose,
we extend the synthesis algorithm such that if multiple constraints exists that satisfy the input
specification it produces those that are more likely to be written by a developer.

Key Idea: Guiding the Synthesis via Probabilistic Model of Constraints. The key idea that addresses
both issues, scalability and natural layouts, is to guide the synthesis with a probabilistic model of
constraints P : Constraint → ℛ[0,1] that assigns a valid probability to each constraint. Then, F is
defined to simply return top K most likely constraints according to P . Our final synthesis algorithm
ψmulti_syn+дuided is shown in Fig. 12. It extendsψmulti_syn in two key aspects: (i) it considers only
a subset of all admissible constraints (F (𝒞 (vi ,v, ρ))), and (ii) out of those constraints c that satisfy
the formula, it selects the ones which are most likely according to the probabilistic model P . In the
remainder of this section we describe how to learn such a probabilistic model of constraints from
a large dataset of layouts written by developers.
We now define a probabilistic model that assigns probabilities to constraints. A key challenge

here is that, as illustrated in Section 3, constraint probability depends on the context. That is, the
same constraints can have different probability depending on where the views they relate to are
located on the screen. To solve this issue we learn the probabilistic model over a large dataset of
layouts that capture the context in which constraints are written by developers.

Probabilistic Model Definition. Let c ∈Constraint be a relational constraint, v ⊂View be a set
of views and ρ ∈View be a content frame as defined in Section 4. We define the probability of
a constraint as:

P (c, ρ,v) =
1

Z (ρ,v)

K∏
k=1

Pfk (c | fk (c,v))
wk

where {Pfk }Kk=1 is a set of probability distributions with associated weights wk ∈ R
k , { fk }Kk=1 is

a set of feature functions and Z is a normalization function that ensures P is a valid probability
distribution (where 𝒞 (v, ρ) denotes all admissible constraints defined overv and ρ):

Z (ρ,v) =
∑

c ∈𝒞 (v,ρ)

K∏
k=1

Pfk (c | fk (c,v))
wk

The intuition behind our definition is that the complex probability distribution of a constraint
can be decomposed into a product of simpler probability distributions Pfk over the set of viewsv .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:18 Pavol Bielik, Marc Fischer, and Martin Vechev

Table 2. Feature functions used to define a probabilistic model of constraints. We use LineSeд(c .th , c .A, c .B)
to denote the shortest line segment connecting handle points of views A and B related by constraint c .

Feature Functions: fk (c,v) Description
Margins

fm
def
= ⟨orientation(c .th), c .mL, c .mR⟩ Returns the margins associated with the constraint c .

Defines one model per orientation.
Bias

fb
def
= ⟨orientation(c .th), c .bh⟩ Returns the bias associated with the constraint c .

Defines one model per orientation.
Distance

fd
def
= ⟨class (c .th),

LineSeд(c .th , c .A, c .B)

⟩ Returns the shortest euclidean distance between

A and B. Defines one model per constraint class.
Size

fs
def
= ⟨orientation(c .th), s .th , ⌊width/16⌋⟩ Returns a tuple consisting of the view size type and

the view width rounded to 16 pixels.
Orientation

fo
def
= ⟨c .th , arctan2(LineSeд(c .th , c .A, c .B))⟩ Returns the angle of the shortest line segment from

A to B. Defines one model per constraint type.
Type

ft
def
= ⟨c .th⟩ Returns the constraint type.

Intersection

fi
def
= |{v | ∀v ∈ v . intersects(v, seд)}|
where seд = LineSeд(c .th , c .A, c .B)

Returns the number of other views intersected by
a line segment between hs and ht .

The goal of each Pfk is to capture one relevant aspect that helps in deciding whether constraint c is
likely or not. Although Pfk and its feature function fk can be complex, we show that even a small
set of well designed simple functions is sufficient to capture the intuition behind good constraints.
We note that even though the feature functions can depend on the context captured by the position
of other views, they cannot condition on other constraints. This is important as it allows us to
pre-compute all constraint probabilities before solving the synthesis formula.
To estimate the distributions Pfk we use a training dataset that reflects developer preferences

instead of manually designing fixed distributions. For a given feature function fk we estimate the
constraint probability using maximum likelihood estimation (via counting):

Pfk (c | fk (c,v)) =
1 +Count (fk (c,v))

1 + |T | +∑t ∈T Count (t)
(1)

where Count (fk (c,v)) denotes the number of times the value computed by function fk was
seen in the training data, T denotes the range of fk when evaluated on training dataset (i.e., set
of all returned values) and ∑t ∈T Count (t) is the number of training examples. To avoid returning
zero probability for values not seen during training we use an approach called additive smoothing
[Johnson 1932; Lidstone 1920] which adds one to the numerator and |T | to denominator.

Feature Functions. The feature functions used in our work are formally defined in Table 2. Each
feature function returns a tuple of values that are used to compute the constraint probability as
defined by Equation 1. We use orientation and class helper function to return the constraint orien-
tation (either horizontal or vertical) and class (relational, centering or circular) respectively. Note

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:19

Table 3. Values and probabilities computed by feature functions of different constraints relating two views.

Constraint Orientation Intersection Margins
fo (c,v) P (c | fo) fi (c,v) P (c | fi) fm (c,v) P (c | fm)

A B
ca

⟨ℛRL, 0°⟩ 0.34 0 0.77 ⟨H , 10⟩ 0.06

A B
cb

⟨ℛLR , 180°⟩ 0.38 0 0.77 ⟨H , 10⟩ 0.06

A B
cc

⟨ℛRR , 0°⟩ 0.06 1 0.07 ⟨H , 60⟩ 0.005

that we use the constraint type (or its orientation/class) as part of the return value as a shorthand
for defining a specialized probability distribution learned only from constraints of that type. Further,
to prefer simpler constraints we use a regularization feature function which returns the number of
unique constants and views used by a constraint c .

Example: Querying the Model. Consider two views A and B positioned next to each other and
related with each other using a constraint as illustrated in Table 3. For each constraint, Table 3
shows the values computed by orientation, intersection and margins feature functions as well as
their probabilities as computed by our model. The most likely constraint is cb since the orientation
180° (i.e., right to left) is slightly more likely than 0° (i.e., left to right). This is due to the fact that
the screen content tends to be written from left to right which results in right to left constraints
(since we want to anchor the view to the left side). Note that the computed orientation probability
for constraint cc is significantly smaller than for ca even though they both have angle value 0°.
This is because for orientation we learn a separate model for each constraint type. As a result, we
learn that aligning views with their right edges as done by constraint cc is much more likely when
the views are either above or below each other instead of side by side as in the above example.
On the other hand, for margins we learn only two models, one for horizontal and one for vertical
constraints. Therefore, since both constraint ca and cb in Table 3 are horizontal and have the same
margin their probabilities according to the margin model are also the same.

Example: Training the Model. In Fig. 13 we show the training of the probabilistic model of
constraints. Fig. 13 a) contains example of five constraints written by a developer that are used
as a training dataset. For example, the constraint c1 specifies that left edge of view v1 is aligned
to left edge of view v3 with zero margin. For each of the constraints we first extract all the
features, as shown in b), such as the orientation, margin or the type of the constraint. Based on the
extracted feature we then define the probabilistic models using maximum likelihood estimation
which first counts the number of times each feature appears in the training dataset and then uses
Equation 1 to compute the constraint probability as shown in Fig. 13 c). For example, consider the
probability of constraint c3 according to the orientation model P (c3 | fo (c3,v)) =

1+Count (fo (c3,v))
1+ |T |+∑t∈T Count (t) .

Here, Count (fo (c3,v)) = Count (⟨ℛLR , 180°⟩) = 2 is the number of times ⟨ℛLR , 180°⟩ appears in
the dataset which is twice (for constraints c3 and c4). |T | = | {⟨ℛLR , 180°⟩, ⟨ℛLR , 160°⟩} | = 2 is
the number of unique features seen during the training and ∑t ∈T Count (t) = 3 is the number
of constraints in the model. Note that using the constraint type as part of the feature denotes
a specialized probability distribution learned only from constraints of that type. Therefore, in Fig. 13
c) separate orientation models are defined for constraint types ℛLL andℛLR .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:20 Pavol Bielik, Marc Fischer, and Martin Vechev

a) Training Dataset b) Features Extracted from the Training Dataset in a)

c) Probabilistic Constraint Models of the Training Dataset in a)

v1 v2
c3

v3 v4
c4

c1

v5 v6
c5

c2

Constraint fo (c,v) fm (c,v) ft (c,v)

c1 ⟨ℛLL, 270°⟩ ⟨H , 0⟩ ℛLL

c2 ⟨ℛLL, 90°⟩ ⟨H , 0⟩ ℛLL

c3 ⟨ℛLR , 180°⟩ ⟨H , 10⟩ ℛLR

c4 ⟨ℛLR , 180°⟩ ⟨H , 16⟩ ℛLR

c5 ⟨ℛLR , 160°⟩ ⟨H , 16⟩ ℛLR

Orientation Model forℛLL Constraints

fo Count (fo) P (c | fo)

⟨ℛLL, 90°⟩ 1 1+1
1+2+2 = 0.4

⟨ℛLL, 270°⟩ 1 1+1
1+2+2 = 0.4

Unseen 0 1+0
1+2+2 = 0.2

Orientation Model for ℛLR Constraints

fo Count (fo) P (c | fo)

⟨ℛLR , 180°⟩ 2 1+2
1+2+3 = 0.5

⟨ℛLR , 160°⟩ 1 1+1
1+2+3 = 0.33̄

Unseen 0 1+0
1+2+3 = 0.16̄

Margin Model for Horizontal Constraints

fm Count (fm) P (c | fm)

⟨H , 0⟩ 2 1+2
1+3+5 = 0.33̄

⟨H , 16⟩ 2 1+2
1+3+5 = 0.33̄

⟨H , 10⟩ 1 1+1
1+3+5 = 0.22̄

Unseen 0 1+0
1+3+5 = 0.11̄

Type Model

ft Count (ft) P (c | ft)

ℛLR 3 1+3
1+2+5 = 0.5

ℛLL 2 1+2
1+2+5 = 0.375

Unseen 0 1+0
1+2+5 = 0.125

Fig. 13. Example of training a probabilistic model of constraints. For each constraint in a training dataset a)
the features are extracted b) and used to train the probabilistic model c). The probabilistic models are trained
using maximum likelihood estimation, that is, by counting how many times each feature appears in the
training dataset. We use "Unseen" to denote the probability mass assigned to unseen features via smoothing.

Constraint Generation. Note that the probabilistic model can condition the constraint probability
on the values of margins, bias or views it relates to. This is crucial for the model precision yet these
are the values we are interested in synthesizing. To address this issue, we take advantage of the fact
that constraints with one unknown variable can be resolved locally given the input specificationv
and the content frame ρ. For this purpose we instantiate all relative and circular positioning
constraints for each pair of viewsA,B ∈ {v ∪ ρ} and solve for the margins and distance respectively.
Further, we instantiate the centering constraints for each triple of views A,B,C ∈ {v ∪ ρ}, by fixing
the bias to be from a fixed set of values and restricting that either one of the margins is zero or
they are both equal to each other. Finally, the logical formulas specified by the constraints are
also simplified (e.g., by evaluating sin(α) in circular constraints for known α). Using this approach
allows us to score the constraints with the probabilistic model before solving the synthesis formula.

Summary. We have presented our approach to synthesizing relational constraints from examples.
We started by introducing a new synthesis algorithm that solves the problem for a single device in
Section 5. In Section 6 we extend the synthesis algorithm such that the synthesized layouts satisfy
a set of robustness properties allowing them to generalize across multiple devices. Finally, in this
section we show how to scale both algorithms to complex real world layouts using a probabilistic
model of constraints to guide the synthesis towards satisfiable solution.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:21

8 EVALUATION
In this section, we provide a thorough evaluation of our proposed approach implemented in a tool
called InferUI that synthesizes Android layouts. We demonstrate that:
• Scalability. The synthesis algorithm scales to real world applications and synthesizes even
the most complex layouts for a single device in ≈3 seconds.
• Precision & Robustness. The synthesized layouts based on a specification from only a single
device generalize well to multiple devices with 92% of views being rendered at the screen
location intended by the user.
• Naturalness. The synthesis algorithm creates natural constraints for developers: 62% of
constraints it synthesizes match those written manually by developers.

We performed all experiments on a typical developer laptop with 2.40GHz Intel(R) Core(TM)
i7-7560U CPU, running Ubuntu 16.04. To ensure correctness of our implementation we verify that
the absolute view positions computed using the Android constraint layout solver version 1.0.2 and
InferUI are the same for all synthesized layouts.

Dataset of Android Applications. For the purposes of evaluation we collected two datasets of
real world layouts: (i) PlayStore dataset consisting of top 500 ranked applications on Google Play
Store, and (ii) a GitHub dataset consisting of top 500 public repositories with the highest number of
watchers on GitHub that contain ConstraintLayout. In order to compare to ground truth layouts
written manually by developers we consider only layouts that use ConstraintLayout. Note that
this does not limit the applicability of our approach since ConstraintLayout is the latest and most
expressive layout available on Android. Further, we preprocess the dataset by removing incomplete
layouts (e.g., position of some views is not constrained), layouts with invalid constraints (e.g.,
relating to a non-existed view) and layouts with circular constraints. Although the Android layout
solver implementation is robust enough to render even such invalid layouts, we remove them as
they are typically of low quality. Finally, we consider only layouts with at least two views.

Training a Probabilistic Model of Constraints. We trained our probabilistic model of constraints
by extracting all user defined constraints from our datasets and evaluating them using the feature
functions from Section 7. When evaluating applications from the PlayStore dataset we use the
model trained on the GitHub dataset and conversely we use the model trained on the GitHub dataset
when evaluating layouts from the PlayStore dataset. Because our model estimates constraint
probability using maximum likelihood estimation (via counting) it is extremely fast to train and
query – it takes less than a second to train models for both of our datasets.

Evaluated Algorithms. To evaluate the effectiveness of our approach we evaluate four algorithms:
• ψsinдle_syn described in Section 5 that synthesizes layouts for a single device.
• ψmulti_syn described in Section 6 that synthesizes layouts that generalize to multiple devices.
• ψmulti_syn+дuided described in Section 7 which is an extension ofψmulti_syn that guides the
synthesis with a learned probabilistic model of constraints.
• ψsinдle_syn+дuided which is a guided extension of theψsinдle_syn algorithm.

For all algorithms, we use the Z3 SMT solver version 4.6.0 [De Moura and Bjørner 2008]
and set the timeout limit to one minute. Further, we guide the search for ψsinдle_syn+дuided and
ψmulti_syn+дuided algorithms by selecting top 5 most likely constraints for each view. In case the
problem is unsatisfiable we increase the number of selected constraints by 10 for each view in the
unsat core. We repeat this process until a satisfiable solution is found or the time limit is reached.
In our experiments top 5 constraints are sufficient in 69% of cases. They need to be expanded once,
twice and three or more times in 21%, 7% and 3% of the cases, respectively.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:22 Pavol Bielik, Marc Fischer, and Martin Vechev

Table 4. Average runtime (top) and percentage of successfully synthesized layouts (bottom) of increasing
complexity of relational layout synthesis algorithms proposed in our work.

Synthesis Number of Views
Algorithm [2, 4) [4, 8) [8, 12) [12, 16) [16, 20)
Single Device
ϕsyn 29 ms 94 ms 490 ms 1.8 s 15s
ϕsyn+дuided 37 ms 59 ms 129 ms 238 ms 519 ms

Multi Device
ϕmulti_syn 49 ms 580 ms 19 s – –
ϕmulti_syn+дuided 44 ms 95 ms 314 ms 3 s 3 s

Synthesis Number of Views Synthesis Result
Algorithm [2, 4) [4, 8) [8, 12) [12, 16) [16, 20) SAT UNSAT TIMEOUT

Single Device
ϕsyn 99.0% 82.9% 38.3% 26.5% 16.6% 845 0 238
ϕsyn+дuided 100% 100% 100% 100% 100% 1083 0 0

Multi Device
ϕmulti_syn 61.3% 23.5% 4.3% 0% 0% 327 9 747
ϕmulti_syn+дuided 98.7% 92.6% 73.0% 58.8% 41.7% 963 97 23

8.1 Scalability & Runtime
To evaluate the scalability of our algorithms, we synthesized layouts of increasing complexity. We
consider layouts containing up to 20 views which includes 99.9% of layouts in our dataset. The
average runtime of successfully synthesized layouts is shown in Table 4 (top). For a single device,
the synthesis runtime is in milliseconds and even the most complex layouts are synthesized in
a little over half a second. When synthesizing constraints for multiple devices, the runtimes are
naturally higher but still very fast and less than 3 seconds. All runtimes reported are end-to-end,
that is, including the time spent generating and scoring constraints using a probabilistic model.
In addition to runtime, we also evaluate the percentage of successfully synthesized layouts.

The results are shown in Table 4 (bottom) together with a breakdown of why the synthesis was
unsuccessful. The algorithmψsinдle_syn scales to layouts of size ≈10 after which it timeouts in 87.2%
of cases. This is because the problem complexity growth is cubic in the number of views and quickly
becomes intractable as more views are added. In contrast, theψsinдle_syn+дuided succeeds for all
layouts in our dataset. The problem of synthesizing layouts that generalize to multiple devices is
much harder and can be solved directly byψmulti_syn only for the smallest of layouts containing
less than 4 views. Guiding the synthesis using a probabilistic model significantly improves the
scalability and allows us to synthesize up to three times larger layouts.
Note that when synthesizing layouts for multiple devices, in addition to timeout, the problem

can also be unsatisfiable. For example, depending on the application design it is not always possible
to fit all views into a smaller screen. Instead, the designer needs to create an alternative design that
removes or restructures some of the views. In some cases however it is possible that the robustness
properties are too restrictive and disallow valid layouts. For example, although preserving margins
or centering is typically correct, some views might be centered simply by chance.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:23

Table 5. Percentage of views that generalize to multiple devices. We consider a given view to generalize if its
synthesized position is the same as the one specified by the user constraints.

Percentage of Views that Generalize to Multiple Devices
Metric ψsinдle_syn ψsinдle_syn+дuided ψmulti_syn+дuided

GitHub Dataset
Horizontal Match 14.7% 78.3% 89.1%
Vertical Match 73.7% 88.3% 96.5%
Full Match 12.6% 69.4% 86.5%

PlayStore Dataset
Horizontal Match 13.7% 85.8% 93.4%
Vertical Match 81.7% 92.4% 98.9%
Full Match 12.9% 75.5% 92.3%

8.2 Precision & Robustness
To evaluate the precision of our approach we compare the absolute view positions computed
using our synthesized layout with the ground truth provided by the user (obtained by rendering
layouts written by developers). Recall that the input to all of our synthesis algorithms is a set of
absolute view positions on a single device. As a result, for a single device synthesis the precision
is always 100% as we are guaranteed to satisfy the input specification. To evaluate the precision
on multiple devices we synthesize layouts based on the specification for devices with screen
size 360dp × 640dp3 (e.g., Galaxy Nexus) and evaluate on devices with screen size in the range
341dp × 518dp to 384dp × 640dp. The results for both our datasets are shown in Table 5. We can
see that ψsinдle_syn generalizes poorly to only 12.6% and 12.9% of all views for the GitHub and
PlayStore datasets respectively. This is expected as the synthesis only considers a single device for
which the layout is synthesized. Theψsinдle_syn+дuided improves the generalization significantly
by more that 55% for both datasets. Here, even though the synthesis algorithm still considers only
a single device, the probabilistic model enables the synthesis to select constraints that are likely
to generalize instead of any constraints that satisfy the input specification. Finally, we can see
that ψmulti_syn+дuided leads to additional ≈ 15% generalization improvement by using both the
probabilistic model of constraints as well as considering multiple devices during synthesis.

Finding Layout Bugs in Existing Applications. The robustness properties defined in Section 6
can also be used to find layout bugs in existing applications. The results of evaluating robustness
properties on both existing and synthesized layouts are shown in Table 6. We can see that although
ψsinдle_syn+дuided significantly improves over ψsinдle_syn it still violates at least one property in
more than half of the analyzed layouts. On the other hand, the ψmulti_syn+дuided guarantees by
design that all the properties are satisfied if the synthesis succeeds. Further, we have also found
several property violations in existing applications. The most common violation is for ϕpixel_per f ect
property which can cause small “off by one pixel” visual artefacts. More importantly, we also
discovered serious issues that result in views being rendered outside of the screen or overlapping
with each other. For concrete examples of bugs we found please refer to Fig. 11.

3dp stands for density independent pixels.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:24 Pavol Bielik, Marc Fischer, and Martin Vechev

Table 6. Percentage of cases where synthesis algorithm violates robustness properties. For user defined
layouts we also provide the total number of violations found.

Percentage of Layouts that Violate Robustness Properties
Property ψsinдle_syn ψsinдle_syn+дuided ψmulti_syn+дuided GitHub + PlayStore

¬ϕinside_screen 86% 52.3% 0% (4%) 21
¬ϕpixel_per f ect 40.3% 22.7% 0% (8.5%) 41
¬ϕpreserve_aspect_ratio 1.2% 0.6% 0% (0.8%) 4
¬ϕpreserve_order 16.8% 24.5% 0% (4%) 19
¬ϕpreserve_marдins 85.0% 59.0% 0% (5%) 24
¬ϕpreserve_center inд 89.0% 55.2% 0% (3.3%) 16

8.3 Synthesising Natural Layouts
We now evaluate the similarity of our synthesized constraints compared to those written manually
by the users. It is a useful metric to optimize even though ideally the user never has to modify the
constraints and in fact does not even need to be aware that they exists (especially if the user is not
a developer but a designer). This is because, as illustrated in Table 5, synthesizing constraints that
a user would write is an important indicator that the layout generalizes well. For our datasets we
synthesize constraints that relate the same views as the user (centering constraints are considered
to match only if both target views are the same) in 62% of the cases using the ψmulti_syn+дuided
algorithm. Note that this percentage of constraints is significantly lower than the percentage of
views that generalize well. This is because multiple constraints typically exists that all result in the
same absolute position of the view. The ones that are finally selected depend on the preference of
the developer such as writing constraints that relate views from left to right.

The Importance of Probabilistic Model of Constraints. We have already shown that guiding the
synthesis using a probabilistic model of constraints is crucial for achieving scalability. For complete-
ness we also evaluate the effect of phrasing the problem as maximum satisfiability, that is, returning
the most likely constraints that satisfy the synthesis formula instead of returning any satisfying
assignment. For ψsinдle_syn+дuided , phrasing the problem as maximum satisfiability instead of
satisfiability leads to 35% improvement in view generalization (Table 5) and 20% improvement in
returning a constraint user would write. For ψmulti_syn+дuided , although we did not observe an
improvement in view generalization (it is already very high at 92%), the improvement in returning
a constraint user would write is still 10%.

8.4 Incorporating User Feedback
So far all our experiments synthesized layouts from a single device input specification. However, as
discussed in Section 6.2, our approach also supports refining the synthesized layout by extending
the input specification with the user feedback. To evaluate such interactive setting, we performed
a synthetic user study as follows: (i) synthesize layout using a single device input specification,
(ii) render the layout on a set of devices, (iii) ask the user to randomly select a single view not
rendered according to her design preferences. If such a view is found, we add it as part of the input
specification and repeat the process from step (i). If no such view is found the synthesis terminates
successfully. Note that this experiment is synthetic as we emulate the user using the constraints the
developers wrote in our dataset of GitHub and PlayStore applications. Overall, usingψmulti_syn

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:25

the user needs to provide 0, 1, 2 or 3 or more feedbacks in 63%, 25%, 8% and 4% of cases, respectively.
That is, in 63% of cases the correct layout is synthesized without any user feedback and in 25% of
cases the user needs to additionally modify the position of only a single view.

Summary. In this section we evaluated our system, called InferUI, and showed that it can synthe-
size layouts in 100% of cases when considering only a single device. Additionally, we successfully
produce a single layout that generalizes to multiple devices in 89% of the cases. A key component
that makes the synthesis scale to real world applications is a probabilistic model of constraints
learned from a large set of layouts written by developers. We use the probabilistic model to effi-
ciently prune the huge search space of possible layouts as well as to synthesize layouts likely to be
written by a developer.

9 RELATEDWORK
We next discuss some of the work that is most closely related to ours.

Layout Generation from Images. Works such as pix2code [Beltramelli 2017], REMAUI [Nguyen
and Csallner 2015] and UI2Code [Chen et al. 2018] aim to generate layouts from images. Pix2code
and UI2Code both use a language model based on deep neural networks which first encodes
the input image using a convolutional neural network and then uses a recurrent neural network
to generates a sequence of view names (e.g., TextView, Button, etc.) that are present on screen.
In pix2code, the output sequence is represented in a domain specific language which encodes
the simplest layout supported in Android (LinearLayout) and arranges all components either
horizontally in a single column or vertically in a single row (or their combination). In UI2Code the
output is a deeply-nested hierarchical structure with the names of all views present on the screen.
This means that UI2Code does not in fact generate layouts but rather a sequence of components
detected on the screen. As a result, a developer still has to write the layout manually and the output
is only used to help in deciding which views are used in the screenshot. REMAUI uses OCR to
identify text within an application screen. Identified words, detected edges and hand-engineered
heuristics are used to segment the screenshot into user interface components, which are then
exported into a layout. What layouts are supported as well as how the export is performed (the
synthesis algorithm) is however not explained by the authors.

As can be seen, pix2code, UI2Code as REMAUI are all focused on the vision problem of identifying
which views are present in the input image rather on the layout synthesis problem. In comparison,
our work is the first to solve the complementary problem to view detection – once the views and
their location are known, we synthesize a layout that both renders them on the screen according to
this specification and generalizes to multiple devices.

Visual Errors Detection. In recent years, several techniques have been developed to detect visual
errors that arise from cross-browser incompatibilities in web applications [Choudhary et al. 2012;
Mahajan et al. 2016; Panchekha et al. 2018; Roy Choudhary et al. 2013] as well as in mobile
applications [Moran et al. 2018]. For this purpose, a given application is typically first rendered on a
set of devices (or web browsers) and searched for visual errors. If an error is found, an effort is made
to localize its precise location (e.g., CSS property causing the error) which is then reported to the
developer. In this line of work, the most recent and advanced tool called Cassius [Panchekha et al.
2018] formalizes a set of core components of CSS 2.1 standard and then verifies that a given web page
conforms to 14 accessibility guidelines. In comparison, in our work we defined a set of robustness
properties that can be verified in a similar way by formalizing theAndroid ConstraintLayout. More
importantly, we developed a scalable synthesis algorithm that encodes the robustness properties as
part of the specification, thus avoiding visual errors by construction at design time.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

156:26 Pavol Bielik, Marc Fischer, and Martin Vechev

Program Synthesis. Combinations of program synthesis with images have been recently used
to synthesize graphic programs from simple hand-drawn images [Ellis et al. 2017] as well as to
infer program updates based for manipulating objects on a SVG canvas [Chugh et al. 2016]. In
both of these approaches, the image is abstracted to a set of traces performed to draw the image.
Although the visual output of these works and ours is similar (a set of rectangles drawn on a canvas)
their internal representation is very different, which also requires developing different techniques
to solve the task. In our case, the representation is declarative and based on a set of relational
constraints compared to representing images as programs containing conditionals or even loops.
Furthermore, although our implementation currently returns a single most likely layout it

might be useful to return multiple layouts amongst which the user can choose. To achieve this we
could incorporate the techniques proposed by [Ellis et al. 2016] which allows efficient sampling of
programs that satisfy given specification.

Machine Learning for Program Synthesis. Several approaches have been developed to accelerate
program synthesizers by guiding the search towards a solution using a learned probabilistic model.
Log-linear models were trained over a set of hand crafted features to guide synthesis of text
processing task [Menon et al. 2013] and automatic patch generation [Long and Rinard 2016]. In
[Balog et al. 2017] a neural network is trained to predict which predefined transformations are
likely to be applied such that an input-output example is satisfied. In [Irving et al. 2016], a recurrent
neural network is trained on a dataset of existing proof traces and used to improve the proof search
of the theorem prover. Neural networks are also used by [Kalyan et al. 2018] for synthesis of text
processing tasks which improves over prior work by combining statistical and symbolic search
approaches and by not requiring hand crafted features. Finally, the work of [Lee et al. 2018] uses
probabilistic higher order grammar [Bielik et al. 2016] that learns to guide A∗ search to speed-up
the synthesis in various domains including bitvectors, circuits and text processing tasks.
Compared to prior work, our work differs in three aspects – the domain over which the proba-

bilistic model is learned, how the model is used to guide the synthesis and the type of the model.
In our work, we introduce learning techniques to the domain of relational layout synthesis. The
inputs over which our features are learned are a set of views positioned on a screen, instead of
strings, numbers or proof traces. Next, our work considers the search procedure that solves the
synthesis task to be a black-box – in our case an SMT solver. As a result, we guide the synthesis
by restricting its search space, concretely, by selecting a subset of constraints that are extended if
the synthesis fails. In contrast, prior works [Balog et al. 2017; Irving et al. 2016; Kalyan et al. 2018;
Lee et al. 2018; Long and Rinard 2016; Menon et al. 2013] keep the search space unchanged and
instead modify the search procedure used to find the solution. This is because while modifying the
search procedure of A∗ or breadth-first search considered in prior works is straightforward, it is
challenging to modify the search procedure of the state-of-the-art SMT solvers that already contain
number of carefully tuned heuristics and strategies that guide the search. Finally, the probabilistic
model used in our work is maximum likelihood estimation that is extremely fast to both train and
query. Here, the model precision can be further improved by using more complex models such as
log-linear model, neural networks or probabilistic higher order grammar.

Learning from Big Code. Several works take advantage of the availability of large open source
repositories and build tools that learn from big code, as surveyed here [Allamanis et al. 2018].
Similar to our work, these works learn a probabilistic model that is used to predict given properties
(e.g., types [Katz et al. 2016; Raychev et al. 2015], variable names [Allamanis et al. 2015] or build
probabilistic models of code [Bielik et al. 2016; Maddison and Tarlow 2014], etc.). Our work follows
this line of work when defining the probabilistic model of constraints however with a different
program representation consisting of views rendered on a device.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

Robust Relational Layout Synthesis from Examples for Android 156:27

10 CONCLUSION
We presented a new approach for synthesizing relational layout constraints from examples and
implemented it in a system called InferUI targeting Android applications. Our approach is based
on a combination of techniques, enabling it to scale to complex real world layouts that generalize
across multiple devices. Concretely, our algorithm synthesizes layouts with provable guarantees
that satisfy both the input specification for a single device as well as a set of robustness properties
(which aid in generalization). We showed that InferUI works well in practice and successfully scales
to synthesizing complex layouts from top 500 ranked applications in the Google Play Store as well
as top 500 most watched application on GitHub. Crucially, we achieved this without compromising
on applicability – we support the latest ConstraintLayout used in Android and directly generate
the corresponding source code to be used by the developer.

ACKNOWLEDGMENTS
The research leading to these results was partially supported by an ERC Starting Grant 680358.

REFERENCES
Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2015. Suggesting accurate method and class names.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE ’15). ACM, New York, NY,
USA, 38–49.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. A Survey of Machine Learning for Big
Code and Naturalness. ACM Comput. Surv. 51, 4, Article 81 (2018), 37 pages. https://doi.org/10.1145/3212695

Amigo. 2018. Amigo. https://play.google.com/store/apps/details?id=com.amigotrip.android
apptype. 2018. https://www.apptype.io/
Asobimasu. 2018. Asobimasu. https://github.com/DipanshKhandelwal/Asobimasu
Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to

write programs. In 5th International Conference on Learning Representations (ICLR ’17).
Tony Beltramelli. 2017. pix2code: Generating Code from a Graphical User Interface Screenshot. CoRR abs/1705.07962 (2017).

arXiv:1705.07962 http://arxiv.org/abs/1705.07962
Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: Probabilistic Model for Code. In Proceedings of The 33rd

International Conference on Machine Learning (ICML ’16), Vol. 48. PMLR, New York, NY, USA, 2933–2942.
Candid. 2018. Candid. https://play.google.com/store/apps/details?id=in.voiceme.app.voiceme
Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018. From UI Design Image to GUI Skeleton: A

Neural Machine Translator to Bootstrap Mobile GUI Implementation. In Proceedings of the 40th International Conference
on Software Engineering (ICSE ’18). ACM, New York, NY, USA, 665–676. https://doi.org/10.1145/3180155.3180240

Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2012. CrossCheck: Combining Crawling and Differencing to
Better Detect Cross-browser Incompatibilities in Web Applications. In Proceedings of the IEEE 5th International Conference
on Software Testing, Verification and Validation (ICST ’12). IEEE Computer Society, Washington, DC, USA, 171–180.
https://doi.org/10.1109/ICST.2012.97

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation, Together at
Last. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’16). ACM, New York, NY, USA, 341–354. https://doi.org/10.1145/2908080.2908103

Alex Corrado, Avery Lamp, Brendan Walsh, Edward Aryee, Erica Yuen, George Matthews, Jen Madiedo, Jeremie Laval, Luis
Torres, Maddy Leger, Paris Hsu, Patrick Chen, Tim Rait, Seth Chong, Wjdan Alharthi, and Xiao Tu. 2018. Ink To Code.
https://www.microsoft.com/en-us/garage/profiles/ink-to-code/

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.1792766

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2017. Learning to Infer Graphics Programs
from Hand-Drawn Images. CoRR abs/1707.09627 (2017). arXiv:1707.09627 http://arxiv.org/abs/1707.09627

Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2016. Sampling for Bayesian Program Learning. In
Advances in Neural Information Processing Systems 29. Curran Associates, Inc., Barcelona, Spain, 1297–1305. http:
//papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning.pdf

FBook. 2018. FBook. https://play.google.com/store/apps/details?id=com.framgia.book

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

https://doi.org/10.1145/3212695
https://play.google.com/store/apps/details?id=com.amigotrip.android
https://www.apptype.io/
https://github.com/DipanshKhandelwal/Asobimasu
http://arxiv.org/abs/1705.07962
http://arxiv.org/abs/1705.07962
https://play.google.com/store/apps/details?id=in.voiceme.app.voiceme
https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1109/ICST.2012.97
https://doi.org/10.1145/2908080.2908103
https://www.microsoft.com/en-us/garage/profiles/ink-to-code/
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://arxiv.org/abs/1707.09627
http://arxiv.org/abs/1707.09627
http://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning.pdf
http://papers.nips.cc/paper/6082-sampling-for-bayesian-program-learning.pdf
https://play.google.com/store/apps/details?id=com.framgia.book

156:28 Pavol Bielik, Marc Fischer, and Martin Vechev

Ruozi Huang, Yonghao Long, and Xiangping Chen. 2016. Automatically Generating Web Page From A Mockup. In The
28th International Conference on Software Engineering and Knowledge Engineering (SEKE ’16). KSI Research Inc. and
Knowledge Systems Institute Graduate School, Redwood City, San Francisco Bay, USA, 589–594. https://doi.org/10.
18293/SEKE2016-231

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef Urban. 2016. DeepMath - Deep
Sequence Models for Premise Selection. In Advances in Neural Information Processing Systems 29. Curran Associates, Inc.,
Barcelona, Spain, 2235–2243. http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection.
pdf

W. E. Johnson. 1932. Probability: The Deductive and Inductive Problems. Mind 41, 164 (1932), 409–423. http://www.jstor.
org/stable/2250183

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani. 2018. Neural-
Guided Deductive Search for Real-Time Program Synthesis from Examples. In 6th International Conference on Learning
Representations (ICLR ’18).

Omer Katz, Ran El-Yaniv, and Eran Yahav. 2016. Estimating Types in Binaries Using Predictive Modeling. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York,
NY, USA, 313–326. https://doi.org/10.1145/2837614.2837674

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating Search-based Program Synthesis Using
Learned Probabilistic Models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’18). ACM, New York, NY, USA, 436–449. https://doi.org/10.1145/3192366.3192410

George James Lidstone. 1920. Note on the general case of the bayes-laplace formula for inductive or a posteriori probabilities.
Transactions of the Faculty of Actuaries 8 (1920), 182–192.

Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Correct Code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY,
USA, 298–312. https://doi.org/10.1145/2837614.2837617

Chris Maddison and Daniel Tarlow. 2014. Structured Generative Models of Natural Source Code. In Proceedings of the
31st International Conference on Machine Learning (ICML ’14), Vol. 32-II. PMLR, New York, NY, USA, 649–657. http:
//dl.acm.org/citation.cfm?id=3044805.3044965

Sonal Mahajan, Bailan Li, Pooyan Behnamghader, and William G. J. Halfond. 2016. Using Visual Symptoms for Debugging
Presentation Failures in Web Applications. In Proceedings of the IEEE 9th International Conference on Software Testing,
Verification and Validation (ICST ’16). IEEE Computer Society, Washington, DC, USA, 191–201. https://doi.org/10.1109/
ICST.2016.35

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. 2013. A Machine Learning Framework for
Programming by Example. In Proceedings of The 30rd International Conference on Machine Learning (ICML ’13), Vol. 28-I.
PMLR, New York, NY, USA, 187–195.

Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshyvanyk. 2018. Automated Reporting of GUI
Design Violations for Mobile Apps. In Proceedings of the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 165–175. https://doi.org/10.1145/3180155.3180246

Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse Engineering Mobile Application User Interfaces with REMAUI
(T). In Proceedings of the 30th ACM/IEEE International Conference on Automated Software Engineering (ASE ’15). IEEE
Computer Society, Washington, DC, USA, 248–259. https://doi.org/10.1109/ASE.2015.32

Pavel Panchekha, Adam T. Geller, Michael D. Ernst, Zachary Tatlock, and Shoaib Kamil. 2018. Verifying That Web Pages
Have Accessible Layout. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’18). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3192366.3192407

psd2android. 2018. http://www.psd2androidxml.com/
psd2mobi. 2018. https://www.psd2mobi.com/service/psd-to-android-ui
Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program Properties from "Big Code". In Proceedings

of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New
York, NY, USA, 111–124. https://doi.org/10.1145/2676726.2677009

Steven P. Reiss. 2014. Seeking the User Interface. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (ASE ’14). ACM, New York, NY, USA, 103–114. https://doi.org/10.1145/2642937.2642976

replia. 2018. http://www.replia.io/
Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2013. X-PERT: Accurate Identification of Cross-browser

Issues in Web Applications. In Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). IEEE
Press, Piscataway, NJ, USA, 702–711. http://dl.acm.org/citation.cfm?id=2486788.2486881

Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon, and Andrew J. Ko. 2018. Rewire: Interface
Design Assistance from Examples. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 504, 12 pages. https://doi.org/10.1145/3173574.3174078

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

https://doi.org/10.18293/SEKE2016-231
https://doi.org/10.18293/SEKE2016-231
http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection.pdf
http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection.pdf
http://www.jstor.org/stable/2250183
http://www.jstor.org/stable/2250183
https://doi.org/10.1145/2837614.2837674
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/2837614.2837617
http://dl.acm.org/citation.cfm?id=3044805.3044965
http://dl.acm.org/citation.cfm?id=3044805.3044965
https://doi.org/10.1109/ICST.2016.35
https://doi.org/10.1109/ICST.2016.35
https://doi.org/10.1145/3180155.3180246
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1145/3192366.3192407
http://www.psd2androidxml.com/
https://www.psd2mobi.com/service/psd-to-android-ui
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2642937.2642976
http://www.replia.io/
http://dl.acm.org/citation.cfm?id=2486788.2486881
https://doi.org/10.1145/3173574.3174078

Robust Relational Layout Synthesis from Examples for Android 156:29

Clemens Zeidler, Christof Lutteroth, Wolfgang Stuerzlinger, and Gerald Weber. 2013a. Evaluating Direct Manipulation
Operations for Constraint-Based Layout. In 14th IFIP Conference on Human-Computer Interaction (INTERACT ’13). Springer,
Berlin, Heidelberg, 513–529. https://doi.org/10.1007/978-3-642-40480-1_35

Clemens Zeidler, Christof Lutteroth, Wolfgang Sturzlinger, and Gerald Weber. 2013b. The Auckland Layout Editor: An
Improved GUI Layout Specification Process. In Proceedings of the 26th Annual ACM Symposium on User Interface Software
and Technology (UIST ’13). ACM, New York, NY, USA, 343–352. https://doi.org/10.1145/2501988.2502007

Clemens Zeidler, Gerald Weber, Wolfgang Stuerzlinger, and Christof Lutteroth. 2017. Automatic Generation of User Interface
Layouts for Alternative Screen Orientations. In 16th IFIP Conference on Human-Computer Interaction (INTERACT ’17).
Springer, Berlin, Heidelberg, 13–35. https://doi.org/10.1007/978-3-319-67744-6_2

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 156. Publication date: November 2018.

https://doi.org/10.1007/978-3-642-40480-1_35
https://doi.org/10.1145/2501988.2502007
https://doi.org/10.1007/978-3-319-67744-6_2

	Abstract
	1 Introduction
	2 Practical Benefits of our Approach
	3 Overview
	4 Capturing Relational Constraints
	4.1 Layout Constraint Solving

	5 Single Device Relational Layout Synthesis
	6 Robust Layout Synthesis: Generalizing Layouts to Multiple Devices
	6.1 Robustness Properties
	6.2 Incorporating User Feedback

	7 Scaling Layout Synthesis with a Probabilistic Constraints Model
	8 Evaluation
	8.1 Scalability & Runtime
	8.2 Precision & Robustness
	8.3 Synthesising Natural Layouts
	8.4 Incorporating User Feedback

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

