
Learning a Static Analyzer from Data

Pavol Bielik, Veselin Raychev, and Martin Vechev

Department of Computer Science, ETH Zürich, Switzerland
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Abstract. To be practically useful, modern static analyzers must pre-
cisely model the effect of both, statements in the programming language
as well as frameworks used by the program under analysis. While im-
portant, manually addressing these challenges is difficult for at least two
reasons: (i) the effects on the overall analysis can be non-trivial, and (ii)
as the size and complexity of modern libraries increase, so is the number
of cases the analysis must handle.
In this paper we present a new, automated approach for creating static
analyzers: instead of manually providing the various inference rules of
the analyzer, the key idea is to learn these rules from a dataset of pro-
grams. Our method consists of two ingredients: (i) a synthesis algorithm
capable of learning a candidate analyzer from a given dataset, and (ii)
a counter-example guided learning procedure which generates new pro-
grams beyond those in the initial dataset, critical for discovering corner
cases and ensuring the learned analysis generalizes to unseen programs.
We implemented and instantiated our approach to the task of learning
JavaScript static analysis rules for a subset of points-to analysis and for
allocation sites analysis. These are challenging yet important problems
that have received significant research attention. We show that our ap-
proach is effective: our system automatically discovered practical and
useful inference rules for many cases that are tricky to manually identify
and are missed by state-of-the-art, manually tuned analyzers.

1 Introduction

Static analysis is a fundamental method for automating program reasoning with
a myriad of applications in verification, optimization and bug finding. While the
theory of static analysis is well understood, building an analyzer for a practical
language is a highly non-trivial task, even for experts. This is because one has
to address several conflicting goals, including: (i) the analysis must be scalable
enough to handle realistic programs, (ii) be precise enough to not report too
many false positives, (iii) handle tricky corner cases and specifics of the partic-
ular language (e.g., JavaScript), (iv) decide how to precisely model the effect of
the environment (e.g., built-in and third party functions), and other concerns.
Addressing all of these manually, by-hand, is difficult and can easily result in
suboptimal static analyzers, hindering their adoption in practice.

Problem statement The goal of this work is to help experts design robust static
analyzers, faster, by automatically learning key parts of the analyzer from data.



We state our learning problem as follows: given a domain-specific language
L for describing analysis rules (i.e., transfer functions, abstract transformers),
a dataset D of programs in some programming language (e.g., JavaScript), and
an abstraction function α that defines how concrete behaviors are abstracted, the
goal is to learn an analyzer pa ∈ L (i.e., the analysis rules) such that programs
in D are analyzed as precisely as possible, subject to α.

Key challenges There are two main challenges we address in learning static
analyzers. First, static analyzers are typically described via rules (i.e., type in-
ference rules, abstract transformers), designed by experts, while existing general
machine learning techniques such as support vector machines and neural net-
works only produce weights over feature functions as output. If these existing
techniques were applied to program analysis [29, 25], the result would simply be
a (linear) combination of existing rules and no new interesting rules would be
discovered. Instead, we introduce domain-specific languages for describing the
analysis rules, and then learn such analysis rules (which determine the analyzer)
over these languages.

The second and more challenging problem we address is how to avoid learn-
ing a static analyzer that works well on some training data D, but fails to
generalize well to programs outside of D – a problem known in machine learn-
ing as overfitting. We show that standard techniques from statistical learning
theory [23] such as regularization are insufficient for our purposes. The idea
of regularization is that picking a simpler model minimizes the expected error
rate on unseen data, but a simpler model also contradicts an important desired
property of static analyzers to correctly handle tricky corner cases. We address
this challenge via a counter-example guided learning procedure that leverages
program semantics to generate new data (i.e., programs) for which the learned
analysis produces wrong results and which are then used to further refine it. To
the best of our knowledge, we are the first to replace model regularization with
a counter-example guided procedure in a machine learning setting with large
and noisy training datasets.

We implemented our method and instantiated it for the task of learning
production rules of realistic analyses for JavaScript. We show that the learned
rules for points-to and for allocation site analysis are indeed interesting and
are missed by existing state-of-the-art, hand crafted analyzers (e.g., Facebook’s
Flow [5]) and TAJS (e.g., [17]).

Our main contributions are:

– A method for learning static analysis rules from a dataset of programs. To
ensure that the analysis generalizes beyond the training data we carefully
generate counter-examples to the currently learned analyzer using an oracle.

– A decision-tree-based algorithm for learning analysis rules from data that
learns to overapproximate when the dataset cannot be handled precisely.

– An end-to-end implementation of our approach and an evaluation on the
challenging problem of learning tricky JavaScript analysis rules. We show
that our method produces interesting analyzers which generalize well to new
data (i.e. are sound and precise) and handle many tricky corner cases.
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Fig. 1. Overview of our approach to learning static analysis rules from data consisting
of three components – a language L for describing the rules, a learning algorithm and
an oracle – that interact in a counter-example based refinement loop.

2 Our Approach

We begin by describing components of our learning approach as shown in Fig. 1.

Obtaining training data D Our learning approach uses dataset of examples
D = {〈xj , yj〉}Nj=1 consisting of pairs 〈xj , yj〉 where xj is a program and yj

is the desired output of the analysis when applied to xj . In general, obtaining
such labeled training data for machine learning purposes is a tedious task. In
our setting, however, this process can be automated because: (i) in static analy-
sis, there is a well understood notion of correctness, namely, the analyzer must
approximate (in the sense of lattice ordering) the concrete program behaviors,
and (ii) thus, we can simply run a large amount of programs in a given program-
ming language with some inputs, and obtain a subset of the concrete semantics
for each program. We note that our learning method is independent of how the
labels are obtained. For example, the labels yj can be obtained by running static
or dynamic analyzers on the programs xj in D or they can be provided manually.

Synthesizer and Language L To express interesting rules of a static analyzer,
we use a loop-free domain-specific language L with branches. The synthesizer
then takes as input the dataset D with a language L and produces a candidate
program analysis pa ∈ L which correctly handles the pairs in D. The synthesizer
we propose phrases the problem of learning a static analysis over L as a problem
in learning decision trees over L. These components are described in Section 5.

Oracle Our goal is to discover a program analysis that not only behaves as
described by the pairs in the dataset D, but one that generalizes to programs
beyond those in D. To address this challenge, we introduce the oracle component
(FindCounterExample) and connect it with the synthesizer. This component



takes as input the learned analysis pa and tries to find another program x for
which pa fails to produce the desired result y. This counter-example 〈x, y〉 is then
fed back to the synthesizer which uses it to generate a new candidate analyzer as
illustrated in Fig. 1. To produce a counter-example, the oracle must have a way
to quickly and effectively test a (candidate) static analyzer. In Section 6, we
present two techniques that make the testing process more effective by leveraging
the current set D as well as current candidate analysis pa (these techniques for
testing a static analyzer are of interest beyond learning considered in our work).

Counter-example guided learning To learn a static analyzer pa, the synthesizer
and the oracle are linked together in a counter-example guided loop. This type
of iterative search is frequently used in program synthesis [31], though its in-
stantiation heavily depends on the particular application task at hand. In our
setting, the examples in D are programs (and not say program states) and we also
deal with notions of (analysis) approximation. This also means that we cannot
directly leverage off-the-shelf components (e.g., SMT solvers) or existing syn-
thesis approaches. Importantly, the counter-example guided approach employed
here is of interest to machine learning as it addresses the problem of overfitting
with techniques beyond those typically used (e.g., regularization [23], which is
insufficient here as it does not consider samples not in the training dataset).

Practical applicability We implemented our approach and instantiated it to the
task of learning rules for points-to and allocation site analysis for JavaScript
code. This is a practical and relevant problem because of the tricky language
semantics and wide use of libraries. Interestingly, our system learned inference
rules missed by manually crafted state-of-the-art tools, e.g., Facebook’s Flow [5].

3 Overview

This section provides an intuitive explanation of our approach on a simple points-
to analysis for JavaScript. Assume we are learning the analysis from one training
data sample given in Fig. 2 (a). It consists of variables a, b and b is assigned an
object s0. Our goal is to learn that a may also point to that same object s0.

Points-to analysis is typically done by applying inference rules until fixpoint.
An example of an inference rule modeling the effect of assignment is:

VarPointsTo(v2, h) Assignment(v1, v2)

VarPointsTo(v1, h)
[Assign]

This rule essentially says that if variable v2 is assigned to v1 and v2 may point
to an object h, then the variable v1 may also point to this object h.

Domain specific language (DSL) for analysis rules: Consider the following gen-
eral shape of inference rules:

VarPointsTo(v2, h) v2 = f(v1)

VarPointsTo(v1, h)
[General]



var b = {}; // empty object s0
a = b;

Expected points-to set

D = {(a→ {s0})}

(a) Training data

VarDeclaration:b

ObjectExpression:{}

Assignment

Identifier:a

Identifier:b

(b) Abstract syntax tree (AST) representation of (a)

fdesired(x) ::=

y if there is Assignment(x, y)

y if there is VarDeclaration:x(y)

⊥ otherwise

foverfit(x) ::=

y if y is VarDeclaration:y preceding x

y if there is VarDeclaration:x(y)

⊥ otherwise

(c) Learned functions to resolve points-to queries from (a)

Fig. 2. Example data for learning points-to analysis.

Here, the function f takes a program element (a variable) and returns another
program element or ⊥. The rule says: use the function f to find a variable v2
whose points-to set will be used to determine what v1 points to. The Assign rule
is an instance of the General rule that can be implemented by traversing the
AST and checking if the parent node of x is of type Assignment and if x is its
first child. In this case, the right sibling of x is returned. Otherwise f returns ⊥.

Problem statement The problem of learning a points-to analysis can now be
stated as follows: find an analysis pa ∈ L such that when analyzing the programs
in the training data D, the resulting points-to set is as outlined in D.

The overfitting problem Consider Fig. 2 (b) which shows the AST of our example.
In addition to Assign, we need to handle the case of variable initialization (first
line in the program). Note that the dataset D does not uniquely determine the
best function f . In fact, instead of the desired one fdesired, other functions can
be returned such as foverfit shown in Fig. 2 (c). This function inspects the
statement prior to an assignment instead of at the assignment itself and yet it
succeeds to produce the correct analysis result on our dataset D. However, this
is due to the specific syntactic arrangement of statements in the training data
D and may not generalize to other programs, beyond those in D.

Our solution To address the problem of overfitting to D, we propose a counter-
example guided procedure that biases the learning towards semantically mean-
ingful analyses. That is, the oracle tests the current analyzer and tries to find
a counter-example on which the analysis fails. Our strategy to generating candi-
date programs is to modify the programs in D in ways that can change both the
syntax and the semantics of those programs. As a result, any analysis that de-
pends on such properties would be penalized in the next iteration of Synthesize.



As we show in the evaluation, our approach results in a much faster oracle than
if we had generated programs blindly. This is critical as faster ways of finding
counter-examples increase the size of the search space we can explore, enabling
us to discover interesting analyzers in reasonable time.

For example, a possible way to exclude foverfit is to insert an unnecessary
statement (e.g., var c = 1) before the assignment a = b in Fig. 2 (a). Here, the
analysis defined by foverfit produces an incorrect points-to set for variable a (as
it points-to the value 1 of variable c). Once this sample is added to D, foverfit
is penalized as it produces incorrect results and the next iteration will produce
a different analysis until eventually the desired analysis fdesired is returned.

Correctness of the approach Our method produces an analyzer that is guaranteed
to be sound w.r.t to all of the examples in D. Even if the analyzer cannot
exactly satisfy all examples in D, the synthesis procedure always returns an
over-approximation of the desired outputs. That is, when it cannot match the
target output exactly, Synthesize learns to approximate (e.g., can return > in
some cases). A formal argument together with a discussion on these points is
provided in Section 5. However, our method is not guaranteed to be sound for
all programs in the programming language. We see the problem of certifying
the analyzer as orthogonal and complementary to our work: our method can
be used to predict an analyzer which is likely correct, generalize well, and to
sift through millions of possibilities quickly, while a follow-up effort can examine
this analyzer and decide whether to accept it or even fully verify it. Here, an
advantage of our method is that the learned analyzer is expressed as a program,
which can be easily examined by an expert, as opposed to standard machine
learning models where interpreting the result is nearly impossible and therefore
difficult to verify with standard methods.

4 Checking Analyzer Correctness

In this section, following [4], we briefly discuss what it means for a (learned)
analyzer to be correct. The concrete semantics of a program p include all of p’s
concrete behaviors and are captured by a function JpK : N→ ℘(C). This function
associates a set of possible concrete states in C with each position in the program
p, where a position can be a program counter or a node in the program’s AST.

A static analysis pa of a program p computes an abstract representation of
the program’s concrete behaviors, captured by a function pa(p) : N → A where
(A,v) is typically an abstract domain, usually a lattice of abstract facts equipped
with an ordering v between facts. An abstraction function α : ℘(C) → A then
establishes a connection between the concrete behaviors and the abstract facts.
It defines how a set of concrete states in C is abstracted into an abstract element
in A. The function is naturally lifted to work point-wise on a set of positions
in N (used in the definition below).

Definition 1 (Analysis Correctness). A static analysis pa is correct if:

∀p ∈ TL. α(JpK) v pa(p) (1)



Here TL denotes the set of all possible programs in the target programming
language (TL). That is, a static analysis is correct if it over-approximates the
concrete behaviors of the program according to the particular lattice ordering.

4.1 Checking Correctness

One approach for checking the correctness of an analyzer is to try and automati-
cally verify the analyzer itself, that is, to prove the analyzer satisfies Definition 1
via sophisticated reasoning (e.g., as the one found in [10]). Unfortunately, such
automated verifiers do not currently exist (though, coming up with one is an
interesting research challenge) and even if they did exist, it is prohibitively ex-
pensive to place such a verifier in the middle of a counter-example learning loop
where one has to discard thousands of candidate analyzers quickly. Thus, the
correctness definition that we use in our approach is as follows:

Definition 2 (Analysis Correctness on a Dataset and Test Inputs). A
static analysis pa is correct w.r.t to a dataset of programs P and test inputs ti if:

∀p ∈ P. α(JpKti) v pa(p) (2)

The restrictions over Definition 1 are: the use of a set P ⊆ TL instead of
TL and JpKti instead of JpK. Here, JpKti ⊆ JpK denotes a subset of a program p’s
behaviors obtained after running the program on some set of test inputs ti.

The advantage of this definition is that we can automate its checking. We
run the program p on its test inputs ti to obtain JpKti (a finite set of executions)
and then apply the function α on the resulting set. To obtain pa(p), we run the
analyzer pa on p; finally, we compare the two results via the inclusion operatorv.

5 Learning Analysis Rules

We now present our approach for learning static analysis rules from examples.

5.1 Preliminaries

Let D = {〈xj , yj〉}Nj=1 be a dataset of programs from a target language TL
together with outputs that a program analysis should satisfy. That is, xj ∈ TL
and yj are the outputs to be satisfied by the learned program analysis.

Definition 3 (Analysis Correctness on Examples). We say that a static
analysis pa ∈ L is correct on D = {〈xj , yj〉}Nj=1 if:

∀j ∈ 1 . . . N . yj v pa(xj) (3)

This definition is based on Definition 2, except that the result of the analysis is
provided in D and need not be computed by running programs on test inputs.

Note that the definition above does not mention the precision of the analysis
pa but is only concerned with soundness. To search for an analysis that is both
sound and precise and avoids obvious, but useless solutions (e.g., always return
> element of the lattice (A,v)), we define a precision metric.



(a)
a ∈ Actions g ∈ Guards

l ∈ L ::= a | if g then l else l
(b) guard1

a1true

guard2
a2true

a3false

false

Fig. 3. (a) Syntax of a template language L with branches for expressing analysis rules.
(b) Example of a function from the L language shown as a decision tree.

Precision metric First, we define a function r : TL×A×L → R that takes a pro-
gram in the target language, its desired program analysis output and a program
analysis and indicates if the result of the analysis is exactly as desired:

r(x, y, pa) = if (y 6= pa(x)) then 1 else 0 (4)

We define a function cost to compute precision on the full dataset D as follows:

cost(D, pa) =
∑

〈x,y〉∈D

r(x, y, pa) (5)

Using the precision metric in Equation 5, we can state the following lemma:

Lemma 1. For a program analysis pa ∈ L and a dataset D, if cost(D, pa) = 0,
then the analysis is correct according to Definition 3.

Proof: The proof is direct. Because cost(D, pa) = 0 and r is positive, then for
every 〈x, y〉 ∈ D, r(x, y, pa) = 0. This means that y = pa(x) and so y v pa(x),
which is as defined in Definition 3. ut

5.2 Problem Formulation

Given a language L that describes analysis inference rules (i.e., abstract trans-
formers) and a dataset D of programs with the desired analysis results, the
Synthesize procedure should return a program analysis pa ∈ L such that:

1. pa is correct on the examples in D (Definition 3), and
2. cost(D, pa) is minimized.

The above statement essentially says that we would like to obtain a sound
analysis which also minimizes the over-approximation that it makes. As the space
of possible analyzers can be prohibitively large, we discuss a restriction on the
language L and give a procedure that efficiently searches for an analyzer such
that correctness is enforced and cost is (approximately) minimized.

5.3 Language Template for Describing Analysis Rules

A template of the language L for describing analysis rules is shown in Fig. 3 (a).
The template is simple and contains actions and guards that are to be instanti-
ated later. The statements in the language are either an action or a conditional
if-then-else statements that can be applied recursively.



An analysis rule of a static analyzer are expressed as a function built from
statements in L. As usual, the function is executed until a fixed point [4]. The
semantics of the if statements in pa is standard: guards are predicates (side-
effect free) that inspect the program being analyzed and depending on their
truth value, the corresponding branch of the if statement is taken. The reason
such if statements are interesting is because they can express analysis rules
such as the ones of our running example in Fig. 2.

We provide a formal semantics and detailed description of how the language L
is instantiated for learning points-to and allocation site analysis in an extended
version of this paper [1].

5.4 ID3 Learning for a Program Analyzer

A key challenge in learning program analyzers is that the search space of possible
programs over L is massive as the number of possible combinations of branches
and subprograms is too large. However, we note that elements of L can be
represented as trees where internal nodes are guards of if statements and the
leafs are actions as shown in Fig. 3 (b). Using this observation we can phrase
the problem of learning an analyzer in L as the problem of learning a decision
tree, allowing us to adapt existing decision tree algorithms to our setting.

Towards that, we extend the ID3 [27] algorithm to handle action programs
in the leafs and to enforce correctness of the resulting analysis pa ∈ L. Similarly
to ID3, our algorithm is a greedy procedure that builds the decision tree in
a top-down fashion and locally maximizes a metric called information gain.

Our learning shown in Algorithm 1 uses three helper functions that we define
next. First, the genAction function returns best analysis abest for a dataset D:

abest = genAction(D) = arg min
a∈Actions

cost(D, a) (6)

That is, genAction returns the most precise program analysis consisting only of
Actions (as we will see later, an action is just a sequence of statements, without
branches). If abest is such that cost(D, abest) = 0, the analysis is both precise and
correct (from Lemma 1), which satisfies our requirements stated in Section 5.2
and we simply return it. Otherwise, we continue by generating an if statement.

Generating branches The ID3 decision tree learning algorithm generates branches
based on an information gain metric. To define this metric, we first use a stan-
dard definition of entropy. Let the vector w = 〈w1, ..., wk〉 consist of elements
from a set C. Then the entropy H on w is:

H(w) = −
∑
c∈C

count(c,w)

k
log2

(
count(c,w)

k

)
(7)

where count(c,w) = | {i ∈ 1 . . . k | wi = c} |.
For a dataset d ⊆ D, let d = {xi, yi}|d|i=1. Then, we define the following vector:

wabest

d = 〈r(xi, yi, abest) | i ∈ 1 . . . |d|〉 (8)



def Synthesize(D)
Input: Dataset D = {〈xj , yj〉}Nj=1

Output: Program pa ∈ L
abest ← genAction(D)
if cost(D, abest) = 0 then return abest;
gbest ← genBranch(abest,D)
if gbest = ⊥ then return approximate(D)// D are noisy examples ;
p1 ← Synthesize({〈x, y〉 ∈ D | gbest(x)})
p2 ← Synthesize({〈x, y〉 ∈ D | ¬gbest(x)})
return if gbest then p1 else p2

Algorithm 1: Learning algorithm for programs from language L.

That is, for every program in d, we record if abest is a precise analysis (via the
function r defined previously). Let g ∈ Guards be a predicate that is to be
evaluated on a program x. Let Dg = {〈x, y〉 ∈ D | g(x)} and D¬g = D \ Dg.

The information gain on a set of examples D for analysis abest and predicate
guard g is then defined as:

IGabest(D, g) = H(wabest

D )− |D
g|
|D|

H(wabest

Dg )− |D
¬g|
|D|

H(wabest

D¬g ) (9)

For a given predicate g, what the information gain quantifies is how many bits
of information about the analysis correctness will be saved if instead of using the
imprecise analysis abest directly, we split the dataset with a predicate g. Using
the information gain metric we define genBranch as follows:

gbest = genBranch(abest,D) =
⊥

arg max
g∈Guards

IGabest(D, g) (10)

Here, arg max⊥ is defined to return ⊥ if the maximized information gain is 0, or
otherwise to return the guard g which maximizes the information gain.

Back to Algorithm 1, if genBranch returns a predicate with positive informa-
tion gain, we split the dataset with this predicate and call Synthesize recursively
on the two parts. In the end, we return an if statement on the predicate g and
the two recursively synthesized analysis pieces.

Approximation If the information gain is 0 (i.e. gbest = ⊥), we could not find
any suitable predicate to split the dataset and the analysis abest has non-zero
cost. In this case, we define a function approximate that returns an approximate,
but correct program analysis – in our implementation we return analysis that
loses precision by simply returning >, which is always a correct analysis.

In practice, this approximation does not return > for the entire analysis,
but only for few of the branches in the decision tree, for which the synthesis
procedure fails to produce a good program using both genAction and getBranch.

In terms of guarantees, for Algorithm 1, we can state the following lemma.

Lemma 2. The analysis pa ∈ L returned by Synthesize is correct according to
Definition 3.



The proof of this lemma simply follows the definition of the algorithm and uses
induction for the recursion. For our induction base, we have already shown that
in case cost(D, abest) = 0, the analysis is correct. The analysis is also correct
if approximate is called. In our induction step we use the fact that analyses p1
and p2 from the recursion are correct and must only show that the composed
analysis if gbest then p1 else p2 is also correct.

6 The Oracle: Testing an Analyzer

A key component of our approach is an oracle that can quickly test whether
the current candidate analyzer is correct, and if not, to find a counter-example.
The oracle takes as an input a candidate analyzer pa and the current dataset D
used to learn pa and outputs a counter-example program on which pa behaves
incorrectly. More formally, if PD = {x | 〈x, y〉 ∈ D}, our goal is to find a counter-
example program p ∈ TL such that p /∈ PD and the correctness condition in
Definition 2 is violated for the given analysis pa and program p. That is, our
oracle must generate new programs beyond those already present in PD.

Key Challenge A key problem the oracle must address is to quickly find a counter-
example in the search space of all possible programs. As we show in Section 7,
finding such a counter-example by blindly generating new programs does not
work as the search space of programs in TL is massive (or even infinite).

Speeding up the search We address this challenge by designing a general purpose
oracle that prioritizes the search in TL based on ideas inspired by state-of-
the-art testing techniques [11, 22]. In particular, we generate new programs by
performing modifications of the programs in PD. These modification are carefully
selected by exploiting the structure of the current analysis pa in two ways: (i) to
select a program in TL and the position in that program to modify, and (ii) to
determine what modification to perform at this position.

6.1 Choosing Modification Positions

Given a program x ∈ PD and analysis pa, we prioritize positions that are read
while executing the program analysis pa and changing them would trigger dif-
ferent execution path in the analyzer pa itself (not the analyzed program). De-
termining these positions is done by instrumenting the program analyzer and
recording the relevant instructions affecting the branches the analyzer takes.

For example, for Fig. 2 (a), we defined the analysis by the function foverfit.
For this function, only a subset of all AST nodes determine which of the three
cases in the definition of foverfit will be used to compute the result of the anal-
ysis. Thus, we choose the modification position to be one of these AST nodes.

6.2 Defining Relevant Program Modifications

We now define two approaches for generating interesting program modifications
that are potential counter-examples for the learned program analysis pa.



Modification via Equivalence Modulo (EMA) Abstraction The goal of
EMA technique is to ensure that the candidate analysis pa is robust to certain
types of program transformations. To achieve this, we transform the statement at
the selected program position in a semantically-preserving way, producing a set
of new programs. Moreover, while the transformation is semantic-preserving, it
is also one that should not affect the result of the analysis pa.

More formally, an EMA transformation is a function Fema : TL×N→ ℘(TL)
which takes as input a program p and a position in the program, and produces
a set of programs that are a transformation of p at position n. If the analysis pa
is correct, then these functions (transformations) have the following property:

∀p′ ∈ Fema(p, n).pa(p) = pa(p′) (11)

The intuition behind such transformations is to ensure stability by exploring
local program modifications. If the oracle detects the above property is violated,
the current analysis pa is incorrect and the counter-example program p′ is re-
ported. Examples of applicable transformations are dead code insertion, variable
names renaming or constant modification, although transformations to use can
vary depending on the kind of analysis being learned. For instance, inserting dead
code that reuses existing program identifiers can affect flow-insensitive analysis,
but should not affect a flow-sensitive analysis. The EMA property is similar to
notion of algorithmic stability used in machine learning where the output of
a classifier should be stable under small perturbations of the input as well as the
concept of equivalence modulo inputs used to validate compilers [22].

Modification via Global Jumps The previous modifications always gener-
ated semantic-preserving transformations. However, to ensure better generaliza-
tion we are also interested in exploring changes to programs in PD that may not
be semantic preserving, defined via a function Fgj : TL × N→ ℘(TL). The goal
is to discover a new program which exhibits behaviors not seen by any of the
programs in PD and is not considered by the currently learned analyzer pa.

Overall, as shown in Section 7, our approach for generating programs to test
the analysis pa via the functions Fgj and Fema is an order of magnitude more
efficient at finding counter-examples than naively modifying the programs in PD.

7 Implementation and Evaluation

In this section we provide an implementation of our approach shown in Fig. 1
as well as a detailed experimental evaluation instantiated to two challenging
analysis problems for JavaScript: learning points-to analysis rules and learning
allocation site rules. In our experiments, we show that:

– The approach can learn practical program analysis rules for tricky cases
involving JavaScript’s built-in objects. These rules can be incorporated into
existing analyzers that currently handle such cases only partially.



Table 1. Program modifications used to instantiate the oracle (Section 6) that gener-
ates counter-examples for points-to analysis and allocation site analysis.

Program Modifications
Fema Fgj

Adding Dead Code Adding Method Arguments
Renaming Variables Adding Method Parameters

Renaming User Functions Changing Constants
Side-Effect Free Expressions

– The counter-example based learning is critical for ensuring that the learned
analysis generalizes well and does not overfit to the training dataset.

– Our oracle can effectively find counter-examples (orders of magnitude faster
than random search).

These experiments were performed on a 28 core machine with 2.60Ghz In-
tel(R) Xeon(R) CPU E5-2690 v4 CPU, running Ubuntu 16.04. In our implemen-
tation we parallelized both the learning and the search for the counter-examples.

Training dataset We use the official ECMAScript (ECMA-262) conformance
suite (https://github.com/tc39/test262) – the largest and most comprehen-
sive test suite available for JavaScript containing over 20 000 test cases. As the
suite also includes the latest version of the standard, all existing implementations
typically support only a subset of the testcases. In particular, the NodeJS inter-
preter v4.2.6 used in our evaluation can execute (i.e., does not throw a syntax
error) 15 675 tests which we use as the training dataset for learning.

Program modifications We list the program modifications used to instantiate the
oracle in Table 1. The semantic preserving program modifications that should not
change the result of analyses considered in our work Fema are inserted dead code
and renamed variables and user functions (together with the parameters) as well
as generated expressions that are side-effect free (e.g, declaring new variables).
Note that these mutations are very general and should apply to almost arbitrary
property. To explore new program behaviours by potentially changing program
semantics we use program modifications Fgj that change values of constants
(strings and numbers), add methods arguments and add method parameters.

7.1 Learning Points-to Analysis Rules for JavaScript

We now evaluate the effectiveness of our approach for the task of learning
a points-to analysis for the JavaScript built-in APIs that affect the binding of
this. This is useful because existing analyzers currently either model this only
partially [12, 5] (i.e., cover only a subset of the behaviors of Function.prototype
APIs) or not at all [24, 16], resulting in potentially unsound results.

We illustrate some of the complexity for determining the objects to which
this points-to within the same method in Fig. 4. Here, this points-to different



global.length = 4;

var dat = [5, 3, 9, 1];

function isBig(value) {

return value >=

this.length;

}

// this points to global

dat.filter(isBig); // [5, 9]

// this points to boxed 42

dat.filter(isBig , 42); // []

// this points to dat object

dat.filter(isBig , dat); // [5, 9]

Fig. 4. JavaScript code snippet illustrating subset of different objects to which this

can point to depending on the context method isBig is invoked in.

Table 2. Dataset size, number of counter-examples found and the size of the learned
points-to analysis for JavaScript APIs that affect the points-to set of this.

Function Name Dataset Size Counter-examples Found Analysis Size∗

Function.prototype

call() 026 372 97 (18)
apply() 006 182 54 (10)

Array.prototype

map() 315 064 36 (6)
some() 229 082 36 (6)
forEach() 604 177 35 (5)
every() 338 031 36 (6)
filter() 408 076 38 (6)
find() 053 073 36 (6)
findIndex() 051 096 28 (6)

Array

from() 032 160 57 (7)
JSON

stringify() 018 055 9 (2)
∗ Number of instructions in Lpt (Number of if branches)

objects depending on how the method is invoked and what values are passed in
as arguments. In addition to the values shown in the example, other values may
be seen during runtime if other APIs are invoked, or the method isBig is used
as an object method or as a global method.

Language L To learn points-to analysis, we use a domain-specific language Lpt

with if statements (to synthesize branches for corner cases) and instructions to
traverse the JavaScript AST in order to provide the specific analysis of each
case. A detailed list of the instructions with their semantics is provided in [1].

Learned analyzer A summary of our learned analyzer is shown in Table 2. For
each API we collected all its usages in the ECMA-262 conformance suite, ranging
from only 6 to more than 600, and used them as initial training dataset for the
learning. In all cases, a significant amount of counter-examples were needed to
refine the analysis and prevent overfitting to the initial dataset. On average, for
each API, the learning finished in 14 minutes, out of which 4 minutes were used to



var obj = {a: 7};

var arr = [1, 2, 3, 4];

if (obj.a == arr.slice (0,2)) { ... }

var n = new Number (7);

var obj2 = new Object(obj);

try { ... } catch (err) { ... }

Allocation Sites
(new object allocated)

Fig. 5. Illustration of program locations (underlined) for which the allocation site anal-
ysis should report that a new object is allocated.

synthesise the program analysis and 10 minutes used in the search for counter-
examples (cumulatively across all refinement iterations). The longest learning
time was 57 minutes for the Function.prototype.call API for which we also
learn the most complex analysis – containing 97 instructions in Lpt. We note
that even though the APIs in Array.prototype have very similar semantics, the
learned programs vary slightly. This is caused by the fact that different number
and types of examples were available as the initial training dataset which means
that also the oracle had to find different types of counter-examples. We provide
an example of the learned analysis in [1].

7.2 Learning Allocation Site Analysis for JavaScript

We also evaluate the effectiveness of our approach on a second analysis task
– learning allocation sites in JavaScript. This is an analysis that is used inter-
nally by many existing analyzers. The analysis computes which statements or
expressions in a given language result in an allocation of a new heap object.

We illustrate the expected output and some of the complexities of allocation
site analysis on a example shown in Fig. 5. In JavaScript, there are various ways
how an object can be allocated including creating new object without calling
a constructor explicitly (for example by creating new array or object expression
inline), creating new object by calling a constructor explicitly using new, cre-
ating a new object by calling a method or new objects created by throwing an
exception. In addition, some of the cases might further depend on actual values
passed as arguments. For example, calling a new Object(obj) constructor with
obj as an argument does not create a new object but returns the obj passed
as argument instead. The goal of the analysis is to determine all such program
locations (as shown in Fig. 5) at which new object is allocated.

Consider the following simple, but unsound and imprecise allocation site
analysis:

falloc(x) =

{
true if there is Argument:x or NewExpression:x

false otherwise

which states that a location x is an allocation site if it is either an argument
or a new expression. This analysis is imprecise because there are other ways to
allocate an object (e.g., when creating arrays, strings, boxed values or by calling



a function). It is also unsound, because the JavaScript compiler might not create
a new object even when NewExpression is called (e.g., new Object(obj) returns
the same object as the given obj).

Instead of defining tricky corner cases by hand, we use our approach to learn
this analyzer automatically from data. We instantiate the approach in a very
similar way compared to learning points-to analysis by adjusting the language
and how the labels in the training dataset are obtained (details provided in [1]).
For this task, we obtain 134 721 input/output examples from the training data,
which are further expanded with additional 905 counter-examples found during
99 refinement iterations of the learning algorithm. For this (much higher than
in the other analyzer) number of examples the synthesis time was 184 minutes
while the total time required to find counter-examples was 7 hours.

The learned program is relatively complex and contains 135 learned branches,
including the tricky case where NewExpression does not allocate a new object.
Compared to the trivial, but wrong analysis falloc, the synthesized analysis marks
over twice as many locations in the code as allocation sites (≈ 21K vs ≈ 45K).

7.3 Analysis Generalization

We study how well the learned analyzer for points-to analysis works for unseen
data. First, we manually inspected the learned analyzer at the first iteration
of the Synthesize procedure (without any counter-examples generated). We did
that to check if we overfit to the initial dataset and found that indeed, the initial
analysis would not generalize to some programs outside the provided dataset.
This happened because the learned rules conditioned on unrelated regularities
found in the data (such as variable names or fixed positions of certain function
parameters). Our oracle, and the counter-example learning procedure, however,
eliminate such kinds of non-semantic analyses by introducing additional function
arguments and statements in the test cases.

Overfitting to the initial dataset was also caused by the large search space of
possible programs in the DSL for the analysis. However, we decided not to restrict
the language, because a more expressive language means more automation. Also,
we did not need to provide upfront partial analysis in the form of a sketch [31].

Oracle effectiveness for finding counter-examples We evaluate the effectiveness of
our oracle to find counter-examples by comparing it to a random (“black box”)
oracle that applies all possible modifications to a randomly selected program
from the training dataset. For both oracles we measure the average number of
programs explored before a counter-example is found and summarize the results
in Table 3. In the table, we observe two cases: (i) early in the analysis loop when
the analysis is imprecise and finding a counter-example is easy, and (ii) later in
the loop when hard corner cases are not yet covered by the analysis. In both
cases, our oracle guided by analysis is orders of magnitude more efficient.

Is counter-example refinement loop needed? Finally, we compare the effect of
learning with a refinement loop to learning with a standard “one-shot” machine



Table 3. The effect of using the learned analysis to guide the counter-example search.

Programs explored until first counter-example is found
Difficulty “Black Box” Guided by Analysis

Easy (≈ 60%) 146 13
Hard (≈ 40%) > 3000 130

learning algorithm, but with more data provided up-front. For this experiment,
we automatically generate a huge dataset Dhuge by applying all possible program
modifications (as defined by the oracle) on all programs in D. For comparison,
let the dataset obtained at the end of the counter-example based algorithm on
D be Dce. The size of Dce is two orders of magnitude smaller than Dhuge.

An analysis that generalizes well should be sound and precise on both datasets
Dce and Dhuge, but since we use one of the datasets for training, we use the
other one to validate the resulting analyzer. For the analysis that is learned
using counter-examples (from Dce), the precision is around 99.9% with the re-
maining 0.01% of results approximated to the top element in the lattice (that
is, it does not produce a trivially correct, but useless result). However, evalu-
ating the analysis learned from Dhuge on Dce has precision of only 70.1% with
the remaining 29.1% of the cases being unsound ! This means that Dce indeed
contains interesting cases critical to analysis soundness and precision.

Summary Overall, our evaluation shows that the learning approach presented
in our work can learn static analysis rules that handle various cases such as the
ones that arise in JavaScript built-in APIs. The learned rules generalize to cases
beyond the training data and can be inspected and integrated into existing static
analyzers that miss some of these corner cases. We provide an example of both
learned analyses in the extended version of this paper [1].

8 Related Work

Synthesis from examples Similar to our work, synthesis from examples typically
starts with a domain-specific language (DSL) which captures a hypothesis space
of possible programs together with a set of examples the program must satisfy
and optionally an oracle to provide additional data points in the form of counter-
examples using CEGIS-like techniques [31]. Examples of this direction include
discovery of bit manipulation programs [19], string processing in spreadsheets
[13], functional programs [7], or data structure specifications [9]. A recent work
has shown how to generalize the setting to large and noisy datasets [28].

Other recent works [15, 18] synthesize models for library code by collecting
program traces which are then used as a specification. The key differences with
our approach are that we (i) use large dataset covering hundreds of cases and
(ii) we synthesize analysis that generalizes beyond the provided dataset.



Program analysis and machine learning Recently, several works tried to use
machine learning in the domain of program analysis for task such as probabilistic
type prediction [20, 29], reducing the false positives of an analysis [25], or as a way
to speed up the analysis [26, 14, 2] by learning various strategies used by the
analysis. A key difference compared to our work is that we present a method to
learn the static analysis rules which can then be applied in an iterative manner.
This is a more complex task than [20, 29] which do not learn rules that can infer
program specific properties and [25, 26, 14, 2] which assume the rules are already
provided and typically learn a classifier on top of them.

Learning invariants In an orthogonal effort there has also been work on learning
program invariants using dynamic executions. For recent representative exam-
ples of this direction, see [8, 21, 30]. The focus of all of these works is rather
different: they work on a per-program basis, exercising the program, obtaining
observations and finally attempting to learn the invariants. Counter-example
guided abstraction refinement (CEGAR) [3] is a classic approach for learning an
abstraction (typically via refinement). Unlike our work, these approaches do not
learn the actual program analysis and work on a per-program basis.

Scalable program analysis Another line of work considers scaling program anal-
ysis in hard to analyse domains such as JavaScript at the expense of analysis
soundness [6, 24]. These works are orthogonal to us and follow the traditional
way of designing the static analysis components by hand, but in the future they
can also benefit from automatically learned rules by techniques such as ours.

9 Conclusion and Future Work

We presented a new approach for learning static analyzers from examples. Our
approach takes as input a language for describing analysis rules, an abstrac-
tion function and an initial dataset of programs. Then, we introduce a counter-
example guided search to iteratively add new programs that the learned analyzer
should consider. These programs aim to capture corner cases of the programming
language being analyzed. The counter-example search is made feasible thanks to
an oracle able to quickly generate candidate example programs for the analyzer.

We implemented our approach and applied it to the setting of learning
a points-to and allocation site analysis for JavaScript. This is a very challenging
problem for learning yet one that is of practical importance. We show that our
learning approach was able to discover new analysis rules which cover corner
cases missed by prior, manually crafted analyzers for JavaScript.

We believe this is an interesting research direction with several possible future
work items including learning to model the interfaces of large libraries w.r.t to
a given analysis, learning the rules for other analyzers (e.g., type analysis), or
learning an analysis that is semantically similar to analysis written by hand.
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