
Scalable Race Detection for
Android Applications

Pavol Bielik, Veselin Raychev, Martin Vechev

Software Reliability Lab
Department of Computer Science
ETH Zurich

Errors Caused by Concurrency

Display article twice Display wrong directory Display wrong order Rate wrong card

Errors Caused by Concurrency

Android Asynchrony

Android Asynchrony

onCreate()

UI Thread

Android Asynchrony

onCreate()

downloadData()

UI Thread Background Thread

Android Asynchrony

onCreate()

downloadData()

onPostExecute()

UI Thread Background Thread

Android Asynchrony

onCreate()

downloadData()

onStop()

onPostExecute()

UI Thread Background Thread

Android Asynchrony

Execution #1

onCreate()

downloadData()

onStop()

onPostExecute()

Android Asynchrony

Execution #1 Execution #2

onCreate()

downloadData()

onStop()

onPostExecute()

onPostExecute()

onStop()

Online analysis tool

FIND RACES

Select Android application APK file for analysis

Captures single trace
observed during the

dynamic analysis

Trace Order onCreate()

downloadData()

onStop()

onPostExecute()

Captures single trace
observed during the

dynamic analysis

Trace Order

Defines set of traces that
are possible interleavings

of the original trace

Happens-before OrderonCreate()

downloadData()

onStop()

onPostExecute()

Defines set of traces that
are possible interleavings

of the original trace

Happens-before Order

Concurrency Interference

unordered conflicting
accesses to the same

memory location

Captures single trace
observed during the

dynamic analysis

Trace Order onCreate()

downloadData()

onStop()

onPostExecute()

Defines set of traces that
are possible interleavings

of the original trace

Captures single trace
observed during the

dynamic analysis

Trace Order Happens-before Order

Concurrency Interference

unordered conflicting
accesses to the same

memory location

order of magnitude
reduction of reported

conflicts

Filtering & Grouping

onCreate()

downloadData()

onStop()

onPostExecute()

onStop()

onPostExecute()

What are the operations capturing essential features of
event-driven applications?

void onCreate() {
 new Thread(…).start();
}

void downloadData() {
 postDelayed(…, 100);
}

What are the operations capturing essential features of
event-driven applications?

begin(…)

end(…)

void onCreate() {
 new Thread(…).start();
}

void downloadData() {
 postDelayed(…, 100);
}

begin(…)

end(…)

What are the operations capturing essential features of
event-driven applications?

begin(…)

end(…)

void onCreate() {
 new Thread(…).start();
}

void downloadData() {
 postDelayed(…, 100);
}

begin(…)

end(…)

fork(…)

What are the operations capturing essential features of
event-driven applications?

begin(…)

end(…)

void onCreate() {
 new Thread(…).start();
}

void downloadData() {
 postDelayed(…, 100);
}

begin(…)

end(…)

fork(…)

enqueue(…)

What are the operations capturing essential features of
event-driven applications?

begin(…)

end(…)

void onCreate() {
 new Thread(…).start();
}

void downloadData() {
 postDelayed(…, 100);
}

begin(…)

end(…)

fork(…)

enqueue(…)

mapping of all
Android APIs

into 11
operations

What are the memory locations on which events can interfere?

void onPostExecute() {
 mDatabase.insert();
}

➔ Object and Class fields

➔ High level operations

READ 23867 mDbHelper
WRITE TABLE:Users ID:2
WRITE TABLE:Users ID:3
…

Instrumentation of
both application and framework

with overhead only ~300%

What is the event happens-before?

Threads
 fork()
 join()
 wait()
 notify()
 lock()
 unlock()

Fork-join model

Message Queue
 postDelayed(delay)
 postAtTime(time)
 postFront()
 postIdle()
 remove()

Binder, Executor, ...

Rich Event-Based model

+

Thorough and precise
happens-before model which
captures Android concurrency

Application

Event ThreadsStandard Threads

Framework &
Other Applications

Key Scalability Ingredients:
➔ Efficient Rule Matching

➔ Sparse Graph

➔ Fast connectivity queries

➔ Evaluating rules only once

➔ Trace optimization

➔ Graph traversal pruning

How to efficiently build
the happens-before graph?

How to efficiently build
the happens-before graph?

Key Scalability Ingredients:
➔ Efficient Rule Matching

➔ Sparse Graph

➔ Fast connectivity queries

➔ Evaluating rules only once

➔ Trace optimization

➔ Graph traversal pruning

Key Scalability Ingredients:
➔ Efficient Rule Matching

➔ Sparse Graph

➔ Fast connectivity queries

➔ Evaluating rules only once

➔ Trace optimization

➔ Graph traversal pruning

How to efficiently build
the happens-before graph? EventOp

CallbackReg#1
CallbackReg#2
CallbackUnreg
CallbackInv
MsgBegin#1
MsgBegin#2
LooperAtomic
MsgEnqueue
ThreadFork
ThreadJoin
ThreadInit
ThreadExit
NotifyWait
MsgRemove
MsgBlocking
Native
IpcHandle
ThreadOp
IpcAsync

Key Scalability Ingredients:
➔ Efficient Rule Matching

➔ Sparse Graph

➔ Fast connectivity queries

➔ Evaluating rules only once

➔ Trace optimization

➔ Graph traversal pruning

How to efficiently build
the happens-before graph? EventOp

CallbackReg#1
CallbackReg#2
CallbackUnreg
CallbackInv
MsgBegin#1
MsgBegin#2
LooperAtomic
MsgEnqueue
ThreadFork
ThreadJoin
ThreadInit
ThreadExit
NotifyWait
MsgRemove
MsgBlocking
Native
IpcHandle
ThreadOp
IpcAsync

re-evaluate rules

first scalable algorithm for
building rich happens-before

graph for whole Android system

How to make scalable race detection in event-based setting?

Run state-of-the-art
race detector for

event driven setting

Raychev et. al. [OOPSLA’13]

happens-before graph
+

memory locations

atomicity violations

ordering violations

1328

harmless races

mCount++;mCount++;

1328

harmless races

mCount++;mCount++;

commutative races

mMap[2] = “SPLASH”;mMap[1] = “OOPSLA”;

1328

harmless races

mCount++;mCount++;

commutative races

mMap[2] = “SPLASH”;mMap[1] = “OOPSLA”;

synchronization races

mActive = true;if (mActive) return;

1328

100x reduction of reported
concurrency conflicts

(1328 → 13)

Manual evaluation

Analysis Scalability
354 Play Store Applications

#events ~28 000

#happens-before
operations ~590 000

#memory locations ~5 140 000

analysis runtime 70s - 130s

10 minutes application usage

Manual evaluation

Main Application Thread
(10625 races → 104 reports)

57.7%

17.3%

25%

Usability
8 Play Store Applications

Harmful

Synchronization

Harmless

Other Threads
(2804 races → 135 reports)

Analysis Scalability

More precise happens-before model:
➔ Complete handling of message types

➔ Message removal

➔ Effect of barriers

➔ More precise IPC communication

Related Work

Metric Our Work CAFA &
DroidRacer

Exploration time 10 min 10 - 30 s

Analysis time 70 - 130 s 30 min - 1 day

CAFA [Hsiao et.al, PLDI’14] & DroidRacer [Maiya et.al PLDI’14]

Error Coverage & Usability

➔ [CAFA]
Null pointer dereference
+ usability
- missed bugs

➔ [DroidRacer]
Application code without filtering
+ better bug coverage
- poor usability (too many races reported)

➔ [our work]
User + Framework code with filtering
+ complete bug coverage
+ usability (100x report reduction)

13

5

Defines set of traces that
are possible interleavings

of the original trace

Captures single trace
observed during the

dynamic analysis

Trace Order Happens-before Order

Concurrency Interference

unordered conflicting
accesses to the same

memory location

order of magnitude
reduction of reported

conflicts

Filtering & Grouping

onCreate()

downloadData()

onStop()

onPostExecute()

