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Online analysis tool

FIND RACES

Select Android application APK file for analysis
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What are the operations capturing essential features of 
event-driven applications?
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  new Thread(…).start(); 
}

void downloadData() {
  postDelayed(…, 100);
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What are the operations capturing essential features of 
event-driven applications?
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  new Thread(…).start(); 
}

void downloadData() {
  postDelayed(…, 100);
}
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mapping of all 
Android APIs 

into 11 
operations 



What are the memory locations on which events can interfere?

void onPostExecute() {
  mDatabase.insert(); 
}

➔ Object and Class fields

➔ High level operations

READ 23867 mDbHelper
WRITE TABLE:Users ID:2
WRITE TABLE:Users ID:3
…



Instrumentation of 
both application and framework 

with overhead only ~300%



What is the event happens-before?

Threads
  fork()
  join()
  wait()
  notify()
  lock()
  unlock()

Fork-join model

Message Queue
  postDelayed(delay)
  postAtTime(time)
  postFront()
  postIdle()
  remove()

Binder, Executor, ...
  

Rich Event-Based model

+





Thorough and precise 
happens-before model which 
captures Android concurrency



Application

Event ThreadsStandard Threads

Framework & 
Other Applications



Key Scalability Ingredients:
➔ Efficient Rule Matching
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re-evaluate rules



first scalable algorithm for 
building rich happens-before 

graph for whole Android system



How to make scalable race detection in event-based setting? 

Run state-of-the-art 
race detector for 

event driven setting

Raychev et. al. [OOPSLA’13]

happens-before graph
+

memory locations

atomicity violations

ordering violations
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harmless races

mCount++;mCount++; 
 

commutative races

mMap[2] = “SPLASH”;mMap[1] = “OOPSLA”; 

synchronization races

mActive = true;if (mActive) return; 

1328



100x reduction of reported 
concurrency conflicts

(1328 → 13) 



Manual evaluation

Analysis Scalability
354 Play Store Applications

#events      ~28 000

#happens-before 
operations    ~590 000

#memory locations ~5 140 000

analysis runtime 70s - 130s

10 minutes application usage



Manual evaluation

Main Application Thread
(10625 races → 104 reports)

57.7%

17.3%

25%

Usability
8 Play Store Applications

Harmful

Synchronization

Harmless

Other Threads
(2804 races → 135 reports)



Analysis Scalability

More precise happens-before model:
➔ Complete handling of message types

➔ Message removal

➔ Effect of barriers

➔ More precise IPC communication

Related Work

Metric Our Work CAFA & 
DroidRacer

Exploration time 10 min 10 - 30 s

Analysis time 70 - 130 s 30 min - 1 day

CAFA [Hsiao et.al, PLDI’14] & DroidRacer [Maiya et.al PLDI’14]

Error Coverage & Usability

➔ [CAFA] 
Null pointer dereference 
+ usability          
- missed bugs

➔ [DroidRacer] 
Application code without filtering
+ better bug coverage 
- poor usability (too many races reported)

➔ [our work] 
User + Framework code with filtering
+ complete bug coverage 
+ usability (100x report reduction)

13
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