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INSTRUMENTED APPLICATION
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Trace Order onCreate ()

Captures single trace

observed during the
dynamic analysis downloadData ()

onPostExecute ()

onStop ()
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dynamic analysis downloadData () of the original trace
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Trace Order

Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

Concurrency Interference

onPostExecute ()
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accesses to the same

onStop () memory location
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Trace Order Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

Filtering & Grouping Concurrency Interference

onPostExecute ()

A

order of magnitude

unordered conflicting
reduction of reported \ accesses to the same
conflicts onStop () memory location
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What are the operations capturing essential features of
event-driven applications?

void onCreate () {

new Thread(..) .start () ;

volid downloadData () {
postDelayed (.., 100);
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What are the operations capturing essential features of
event-driven applications?

begin(...)
void onCreate () {
new Thread(..) .start () ;
}
end(..)
begin(...)

volid downloadData () {
postDelayed (.., 100);

end(...)
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What are the operations capturing essential features of
event-driven applications?

begin (...)
volid onCreate () {
fork(..) new Thread(..) .start ()
}
end (...)
begin (...)

volid downloadData () {
postDelayed (.., 100);

end (...)
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What are the operations capturing essential features of
event-driven applications?

RACE
EXPLORATION

begin (...)
volid onCreate () {
fork(...) new Thread(..) .start();
}
end (...)
begin (...)
vold downloadData () {
enqueue (...) postDelayed (.., 100);

end (...)



INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What are the operations capturing essential features of
event-driven applications?

begin (...)
volid onCreate () {
. fork (..) new Thread(..) .start ()
mapping of all }
Android APlIs end (...)
into 11 begin (..) |
0 erations vold downloadData () {
P enqueue (...) postDelayed (.., 100);

end (...)
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What are the memory locations on which events can interfere?

=> Object and Class fields
-> High level operations

volid onPostExecute () {

mDatabase.insert(); ——» READ 23867 mDbHelper
} WRITE TABLE:Users ID:2
WRITE TABLE:Users ID:3
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Instrumentation of
both application and framework
with overhead only ~300%
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What is the event happens-before?

Fork-join model Rich Event-Based model
Threads Message Queue
?Ofk() postDelayed (delay)
join() + postAtTime (time)
walF() postFront ()
notify () postIdle ()
Lock () remove ()
unlock () . :
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Thorough and precise
happens-before model which
captures Android concurrency
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How to efficiently build
the happens-before graph?

Key Scalability Ingredients: v

Efficient Rule Matching l
Sparse Graph

Fast connectivity queries l

Evaluating rules only once

Trace optimization l

\ I N 2 T

Graph traversal pruning ”
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How to efficiently build
the happens-before graph?

Key Scalability Ingredients:

Efficient Rule Matching
Sparse Graph

Fast connectivity queries
Evaluating rules only once

Trace optimization
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Graph traversal pruning

HAPPENS-BEFORE

GRAPH BUILDING DETECTION

RACE FILTERING RACE
AND GROUPING EXPLORATION

EventOp
CallbackReg#l
CallbackReg#2
CallbackUnreg
CallbackInv
MsgBegini#l
MsgBegin#2
LooperAtomic
MsgEnqueue
ThreadFork
ThreadJoin
ThreadInit
ThreadExit
NotifyWait
MsgRemove
MsgBlocking
Native
IpcHandle
ThreadOp
IpcAsync
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How to efficiently build
the happens-before graph?

Key Scalability Ingredients:
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Efficient Rule Matching
Sparse Graph

Fast connectivity queries
Evaluating rules only once
Trace optimization

Graph traversal pruning
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re-evaluate rules

/‘EventOp ‘\\

CallbackReg#l
CallbackReg#2
CallbackUnreg
CallbackInv
MsgBegini#l
MsgBegin#2
l \\LooperAtomic A//
MsgEnqueue
> ThreadFork
l ThreadJoin
ThreadInit
] ThreadExit
l NotifyWait
MsgRemove
] MsgBlocking
l Native
IpcHandle
ThreadOp
IpcAsync
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first scalable algorithm for
building rich happens-before
graph for whole Android system
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How to make scalable race detection in event-based setting?

happens-before graph atomicity violations
+

memory locations

- O
n|Yo gO Run state-of-the-art
- SI:I o g —> Il dgtectorfqr
é ol ogog event driven setting -
ordering violations
0 Uo o

Raychev et. al. [OOPSLA'13]
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mCount++;
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harmless races
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mCount++;
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mCount++;

mMap[l] =
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harmless races

mCount++;

commutative races

“OOPSLA";

mMap [2] =
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harmless races

mCount++; mCount++;

commutative races

mMap[1l] = “OOPSLA”; mMap [2] = “SPLASH”;

synchronization races

if (mActive) return; mActive = true;
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100x reduction of reported
concurrency conflicts

(1328 — 13)
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EXPLORATION




Manual evaluation

Analysis Scalability
354 Play Store Applications

[l ¢ O

#events ~28 000

#happens-before

: ~590 000
operations

#memory locations ~5 140 000

analysis runtime 70s - 130s

10 minutes application usage



Manual evaluation

Usability
8 Play Store Applications

B A A QO 14 =
Main Application Thread Other Threads
(10625 races — 104 reports) (2804 races — 135 reports)
armul
Synchronization

YN Harmless



Related Work

CAFA [Hsiao et.al, PLDI'14] & DroidRacer [Maiya et.al PLDI'14]

Analysis Scalability

, CAFA &

Exploration time 10 min 10-30s

Analysis time 70-130s 30 min - 1 day

More precise happens-before model:
-> Complete handling of message types
Message removal

Effect of barriers

v o

More precise IPC communication

Error Coverage & Usability

—

[CAFA]

Null pointer dereference
+ usability
- missed bugs

[DroidRacer]

Application code without filtering
+ better bug coverage
- poor usability (too many races reported)

[our work]

User + Framework code with filtering

+ complete bug coverage
+ usability (100x report reduction)

13
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Trace Order Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

Filtering & Grouping Concurrency Interference

onPostExecute ()

order of magnitude

unordered conflicting

accesses to the same
conflicts onStop () memory location

reduction of reported




