Scalable Race Detection for
Android Applications

Pavol Bielik, Veselin Raychev, Martin Vechev

Software Reliability Lab

ETH Zurich PIDOSBUPGH - 2015

"N OCOLOBEF 25-30

5 99

Department of Computer Science (1 sDI_HSH

Errors Caused by Concurrenc

<4l 17.02 om <4l 17.00 @174 o m =@ 1707

M oiFileManager R Q A frenchbody-pa.. #° Q
| .] New: 28 Rev: 0 ID: 1 C: French (Body parts)
storage emulated # Download April, 2013

Y
Victories In Oregon, Utah For 3 | - screenshots v .
Same-Sex-Marriage Proponents L ay,

in america 1.PNG
‘ |

o) For Brazil's Soccer Stars, Careers
Often Begin On Makeshift Fields

2.PNG

NASA Chief Dismisses Concern
Over Russia Quitting Space
Station

vesti la téte

«) As Court Fees Rise, The Poor Are 4.PNG

Paying The Price
March, 2013

«) As Court Fees Rise, The Poor Are] Sl k =
Paying The Price k
ving ¥ 0 Forgot 1 Forgot 2 Very Hard
= - . 0.0day 0.0day 1.0 day
- ab

Grooveshark.apk

NO AUDIO AVAILABLE) F:
NO AUDIO AVAILABL 3 Hard 8 =15 5 sery Easy

Login into Flickr from the Preferences 3.0day 40day 50day

o O = o O = o O =

Display article twice Display wrong directory Display wrong order Rate wrong card

Errors Caused by Concurrency

Scarface The Ugly Truth

Action and Adventure Comedy

Yok ko

Unfortunately, United Airlines has
stopped.

REPORT OK

The Hangover Part Bad Boys Il
1l

Action and Adventure
Comedy
*kkkd €11.99 Kkkkd

Android Asynchrony

Android Asynchrony

Ul Thread

onCreate ()

Android Asynchrony

Ul Thread Background Thread

onCreate ()

downloadData ()

Android Asynchrony

Ul Thread Background Thread

onCreate ()

= Apps Q
CATEGORIES HOME TOPSELLING TOP APP!

..
'\ EDITORS' CHOICE (=) ANDROID WEAR

Categories downloadData ()

Books & Reference
Business
Comics

Communication

onPostExecute ()

Education

Entertainment

Famil

Android Asynchrony

Ul Thread Background Thread

onCreate ()

downloadData ()

onPostExecute ()

onStop ()

Android Asynchrony

onCreate ()

downloadData ()

onPostExecute ()

onStop ()

Execution #1

Android Asynchrony

onCreate ()

downloadData ()

onPostExecute () onStop ()

onStop () onPostExecute ()

Execution #1 Execution #2

Online analysis tool

EUE"TQJRH[_FQ

for Android™

Select Android application APK file for analysis

| Choose File |No file chosen

FIND RACES

INSTRUMENTED APPLICATION
SYSTEM EXPLORATION

Trace Order onCreate ()

Captures single trace

observed during the
dynamic analysis downloadData ()

onPostExecute ()

onStop ()

INSTRUMENTED APPLICATION HAPPENS-BEFORE
SYSTEM EXPLORATION GRAPH BUILDING

Trace Order

Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

onPostExecute ()

onStop ()

ONONONS

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION

Trace Order

Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

Concurrency Interference

onPostExecute ()

A

unordered conflicting
accesses to the same

onStop () memory location

ONONONGRONC

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

Trace Order Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

Filtering & Grouping Concurrency Interference

onPostExecute ()

A

order of magnitude

unordered conflicting
reduction of reported \ accesses to the same
conflicts onStop () memory location

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What are the operations capturing essential features of
event-driven applications?

void onCreate () {

new Thread(..) .start () ;

volid downloadData () {
postDelayed (.., 100);

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What are the operations capturing essential features of
event-driven applications?

begin(...)
void onCreate () {
new Thread(..) .start () ;
}
end(..)
begin(...)

volid downloadData () {
postDelayed (.., 100);

end(...)

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What are the operations capturing essential features of
event-driven applications?

begin (...)
volid onCreate () {
fork(..) new Thread(..) .start ()
}
end (...)
begin (...)

volid downloadData () {
postDelayed (.., 100);

end (...)

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING

What are the operations capturing essential features of
event-driven applications?

RACE
EXPLORATION

begin (...)
volid onCreate () {
fork(...) new Thread(..) .start();
}
end (...)
begin (...)
vold downloadData () {
enqueue (...) postDelayed (.., 100);

end (...)

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What are the operations capturing essential features of
event-driven applications?

begin (...)
volid onCreate () {
. fork (..) new Thread(..) .start ()
mapping of all }
Android APlIs end (...)
into 11 begin (..) |
0 erations vold downloadData () {
P enqueue (...) postDelayed (.., 100);

end (...)

Ol®® © O E

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What are the memory locations on which events can interfere?

=> Object and Class fields
-> High level operations

volid onPostExecute () {

mDatabase.insert(); ——» READ 23867 mDbHelper
} WRITE TABLE:Users ID:2
WRITE TABLE:Users ID:3

Ol®® ©® O ®

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

Instrumentation of
both application and framework
with overhead only ~300%

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

What is the event happens-before?

Fork-join model Rich Event-Based model
Threads Message Queue
?Ofk() postDelayed (delay)
join() + postAtTime (time)
walF() postFront ()
notify () postIdle ()
Lock () remove ()
unlock () . :
a = end(mid) n = enqueue(mid)
B = begin(mid’) v = enqueue(mid’) n =<7y
looperord(n,q/l)) l n.;lizpatcher; y.diizc;tcher
5 s : type elaye tTime, Front e
a = fork(., tid) B = thread_init(tid) " yg_tiée {Dyelazyed,AtT'i’me, Idie} J
a < ,8 n.barrier V —y.barrier

a<p

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION
a.cvent #L a.cvent = B.event a<z 8 N lx:giu(mid)‘ a = end(mid)
3 (EVENTOP) 8 = begin(mid") ~ = end(mid")
e N = adispatcher = S.dispatcher
a = register(c) 8 = invoke(e,) aibpolchérives = BONPEE {LOOPERATOMIC)
- - Y - (CALLBACKREG#1) a =3
a < §
. e P O . a = end(mid) < B = begin(mid')
a = register(e) 8 = unregister(c) 5 B e i) - p=hegoimid] (MSGENQUEUE) a.type, B.type € {Input, Display}
S <A (CALLBACKREG#2) a=<j a.type = B.type a.dijp;tcher = B.dispatcher T
: ; 5 e @
=ikl 3 A= amregisterld) a = fork(_ tid) 8 = thread_init(tid) (THREADFORK)
SR (CALLBACKUNREG) a=8 a = end(mid) n = enqueue(mid)
s . : B = begin(mid') ~ = enqueue(mid’) n <y
a,8 =invoke(e, syne) A a <, 3 g Khrendeenttitid) p=Jomnt; W) (THREADJOIN) n.syncV —y.sync n.type = ~v.type = IPC
= J - (CALLBACKINY) a =8 n.pid = ~.pid n.dispatcher = ~.dispatcher (IFCHANDLE)
S a<pj
a = end(mid) 1 = enqueue(mid) g Hhvedd tE(ld) B € Zid\ THREADINIT
) ; () t= t=1
8 = begin(mid') ~ = engueue(mid") n=" a=<p & B € Teia a<«B erepens = F.eventi= (THREADOP)
loopergyaln.) n.dispatcher = y.dispatcher y o a<p
n.type € { Delayed, AtTime, Front, [dle} 8 = thread_exit(tid) @ € mg \ B (THREADEXIT)
v.type € {Delayed, AtTime, Idle} a=<3 a = end(mid) 1 = enqueue(mid)
nbarrier V -y barrier oot B = begin(mid’) v = enqueue(mid’) n<~
a <8 (MSGBEGIN#1) a = notify(id) 8 = wait(id) W G n.type = ~v.type = IPC —n.sync —y.sync
- OTIFY WAIT) tid = ~y.tid .dispatcher = ~y.dispatcher
a =3 i i i i 3 R (IPCASYNC)
@

o = end(mid")
~ = enqueue(mid") 8 = begin({mid)
n = enqueue(mid) n=<y=<8

ndispatcher = vy .dispatcher F.type = Front a<B

n.type € { Delayed, AtTime, Front, Idle}

~.barrier V nbarrier
- (MSGBEGIN#2)
a<j

a = begin(mid)
8 = remove(mid) = enqueue(mid) =8
d i L d = i (MSGREMOVE)

o = end(mid) 3 = blocking-enqueue_end(maid)
- Yy - (MSGBLOCKING)
o £

ONO]) [SNOXC

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

Thorough and precise
happens-before model which
captures Android concurrency

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

Standard Threads Event Threads

goug

N He

Application Framework &
Other Applications

oo0g0 Ogjp~
00
a
a
0o
Oo00 oo

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

How to efficiently build
the happens-before graph?

Key Scalability Ingredients: v

Efficient Rule Matching l
Sparse Graph

Fast connectivity queries l

Evaluating rules only once

Trace optimization l

\ I N 2 T

Graph traversal pruning ”

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

How to efficiently build
the happens-before graph?

Key Scalability Ingredients: y \

Efficient Rule Matching l \
Sparse Graph

Fast connectivity queries l

Evaluating rules only once

Trace optimization l

\ ZBE R N

Graph traversal pruning ”

INSTRUMENTED APPLICATION
SYSTEM EXPLORATION

How to efficiently build
the happens-before graph?

Key Scalability Ingredients:

Efficient Rule Matching
Sparse Graph

Fast connectivity queries
Evaluating rules only once

Trace optimization

\ 20N I N 2

Graph traversal pruning

HAPPENS-BEFORE

GRAPH BUILDING DETECTION

RACE FILTERING RACE
AND GROUPING EXPLORATION

EventOp
CallbackReg#l
CallbackReg#2
CallbackUnreg
CallbackInv
MsgBegini#l
MsgBegin#2
LooperAtomic
MsgEnqueue
ThreadFork
ThreadJoin
ThreadInit
ThreadExit
NotifyWait
MsgRemove
MsgBlocking
Native
IpcHandle
ThreadOp
IpcAsync

INSTRUMENTED APPLICATION

SYSTEM EXPLORATION

How to efficiently build
the happens-before graph?

Key Scalability Ingredients:

\ 20N I N 2

Efficient Rule Matching
Sparse Graph

Fast connectivity queries
Evaluating rules only once
Trace optimization

Graph traversal pruning

HAPPENS-BEFORE RACE RACE FILTERING RACE
GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

re-evaluate rules

/‘EventOp ‘\\

CallbackReg#l
CallbackReg#2
CallbackUnreg
CallbackInv
MsgBegini#l
MsgBegin#2
l \\LooperAtomic A//
MsgEnqueue
> ThreadFork
l ThreadJoin
ThreadInit
] ThreadExit
l NotifyWait
MsgRemove
] MsgBlocking
l Native
IpcHandle
ThreadOp
IpcAsync

ONO]) [SNOXC

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

first scalable algorithm for
building rich happens-before
graph for whole Android system

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

How to make scalable race detection in event-based setting?

happens-before graph atomicity violations
+

memory locations

- O
n|Yo gO Run state-of-the-art
- SI:I o g —> Il dgtectorfqr
é ol ogog event driven setting -
ordering violations
0 Uo o

Raychev et. al. [OOPSLA'13]

INSTRUMENTED
SYSTEM

APPLICATION
EXPLORATION

HAPPENS-BEFORE
GRAPH BUILDING

RACE
DETECTION

RACE FILTERING
AND GROUPING

RACE
EXPLORATION

INSTRUMENTED
SYSTEM

APPLICATION
EXPLORATION

HAPPENS-BEFORE
GRAPH BUILDING

mCount++;

RACE
DETECTION

harmless races

RACE FILTERING
AND GROUPING

mCount++;

RACE
EXPLORATION

INSTRUMENTED
SYSTEM

APPLICATION
EXPLORATION

mCount++;

mMap[l] =

HAPPENS-BEFORE
GRAPH BUILDING

RACE
DETECTION

RACE FILTERING
AND GROUPING

harmless races

mCount++;

commutative races

“OOPSLA";

mMap [2] =

RACE

“SPLASH”;

EXPLORATION

INSTRUMENTED
SYSTEM

APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

harmless races

mCount++; mCount++;

commutative races

mMap[1l] = “OOPSLA”; mMap [2] = “SPLASH”;

synchronization races

if (mActive) return; mActive = true;

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING

100x reduction of reported
concurrency conflicts

(1328 — 13)

®

RACE
EXPLORATION

Manual evaluation

Analysis Scalability
354 Play Store Applications

[l ¢ O

#events ~28 000

#happens-before

: ~590 000
operations

#memory locations ~5 140 000

analysis runtime 70s - 130s

10 minutes application usage

Manual evaluation

Usability
8 Play Store Applications

B A A QO 14 =
Main Application Thread Other Threads
(10625 races — 104 reports) (2804 races — 135 reports)
armul
Synchronization

YN Harmless

Related Work

CAFA [Hsiao et.al, PLDI'14] & DroidRacer [Maiya et.al PLDI'14]

Analysis Scalability

, CAFA &

Exploration time 10 min 10-30s

Analysis time 70-130s 30 min - 1 day

More precise happens-before model:
-> Complete handling of message types
Message removal

Effect of barriers

v o

More precise IPC communication

Error Coverage & Usability

—

[CAFA]

Null pointer dereference
+ usability
- missed bugs

[DroidRacer]

Application code without filtering
+ better bug coverage
- poor usability (too many races reported)

[our work]

User + Framework code with filtering

+ complete bug coverage
+ usability (100x report reduction)

13

ONONONGRO

INSTRUMENTED APPLICATION HAPPENS-BEFORE RACE RACE FILTERING RACE
SYSTEM EXPLORATION GRAPH BUILDING DETECTION AND GROUPING EXPLORATION

Trace Order Happens-before Order

onCreate ()

Captures single trace Defines set of traces that
observed during the are possible interleavings
dynamic analysis downloadData () of the original trace

Filtering & Grouping Concurrency Interference

onPostExecute ()

order of magnitude

unordered conflicting

accesses to the same
conflicts onStop () memory location

reduction of reported

