Probabilistic Model for Code with Decision Trees

Veselin Raychev, Pavol Bielik, Martin Vechev

Software Reliability Lab Department of Computer Science ETH Zurich

Big Data Revolution

Research area

Big Data

Application

Image labeling

Computer vision

A group of people shopping at an outdoor market. There are many vegetables at the fruit stand.

Programming languages

Statistical programming tools

All of these benefit from a good probabilistic model for code.

Probabilistic model for code

Model is a key part of the Statistical Programming Tools

Goal: score programs

Select best among several candidates

Example: Which function is more likely?

```
function area(a) {
    return a.width * a.height
}
```

(b)

function area(a) { return a.width * a.close()

Statistical code completion

Model is a key part of Statistical Programming Tools

Goal: score programs

Select best among several candidates

Example:

```
function area(a) {
  return a.width * a.
} height *
  width *
```


Model usability

Directly applicable to code completion, but is a key statistical component for many others tasks: e.g. natural language to code, statistical bug localization

Existing works: naive models

Most common model: n-gram

Training (3-gram model):

Prediction:

Existing works: naive models

Most common model: n-gram

Training (3-gram model):

Prediction:

3. Evaluation

2. Domain Specific Language encoding Decision Trees

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang

Conditioning context

Indirection

Example contexts

Evaluation metric: entropy

Evaluation metric: entropy

		Average entropy: ~1.91 bits
console. info	P(info .) = 1/3	~1.58
console <mark>. info</mark>	P(info .)=1/3	~1.58
a.width * a. height	P(height .) = 1/3	~1.58
b.width * b. height	P(height .) = 1/3	~1.58
a.right - a <mark>.</mark> left	P(left .) = 1/6	~2.58
b.bottom - t. top	P(top .) = 1/6	~2.58

Unconditional model

No conditioning in the probability distribution: $ctx=\bot$		Average entropy: ~1.91 bits
console. info	P(info) = 1/3	~1.58
console. info	P(info) = 1/3	~1.58
a.width * a. height	P(height) = 1/3	~1.58
b.width * b. height	P(height) = 1/3	~1.58
a.right - a. left	P(left) = 1/6	~2.58
b.bottom - b. top	P(top) = 1/6	~2.58

1. Richer conditioning context

3. Evaluation

2. Domain Specific Language encoding Decision Trees

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang

Synthesize the best model

Find function f

From a domain specific language

Same basic idea in Learning Programs from Noisy Data [POPL'16]

Main DSL requirement

Program ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Program else Program

Best program

If there is no prior field access, then us otherwise prior field access	se 3-gram model,	Entropy (bits)
console. info	P(info console.)=1	0
console. info	P(info console.)=1	0
a.width * a. height	P(height a.)=1	0
b.width * b. height	P(height b.) = 1	0
a. <mark>right</mark> - a. left	P(left a.)=1	0
b.bottom - b. top	P(top b.) = 1	0

Synthesis using basic part of DSL

Basic part

Includes models from a simple DSL

Involved See POPL'16

At high level: Search through **thousands** of candidate programs that describe conditioning.

Synthesis of branch part

Space of possible programs:

Goal: find program with best entropy

Infinite with nesting

Idea 1: synthesis in parts

1. Synthesize branch with empty programs in leaves

Synthesis of branch part

Space of possible programs:

Idea 2: synthesis in parts

Recursively
call 1Recursively
call 1for branchfor branch

Main result

Synthesis procedure 1 is a new formulation of a known and popular algorithm for decision tree learning: ID3

In fact, we extended ID3 to support programs in decision tree leaves from the BasicPart DSL fragment

Synthesis procedure 2 is new And also applicable to decision trees New name: E13

1. Richer conditioning context

3. Evaluation

2. Domain Specific Language encoding Decision Trees

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang

Evaluation

150'000 JavaScript files, from GitHub.com, parsed into ASTs. Public datasets.

100'000 files Training data for synthesis

50'000 files Evaluation data

Evaluation files are not on the same projects as training

Synthesis time: ~100 hours

Question: How well can we predict program elements?

Accuracy: JavaScript

Query time for all models is basically the same (>10K queries per second)

Task	PCFG	3-gram	ID3+	E13
API completion	0.04%	30.0%	54%	66.6%
Field access completion	3.2%	32.9%	52.5%	67.0%
Predicting loops	0%	37.5%	65.0%	28.3%

Many more evaluation results in the paper.... Also for Python. Easily applicable to all languages.

Big improvement over prior methods

Both ID3+ and E13 learn useful probabilistic models