
Probabilistic Model for Code
with Decision Trees

Veselin Raychev, Pavol Bielik, Martin Vechev
Software Reliability Lab
Department of Computer Science
ETH Zurich

Big Data Revolution
Research area Big Data Application

Computer
vision

Image labeling

Programming
languages ?

2

Understand code/security [POPL’15]:
Deobfuscation
Type Prediction

Statistical programming tools

Write new code
[PLDI’14, POPL’16]:
Code Completion

Camera camera = Camera.open();
camera.SetDisplayOrientation(90);

 ?

Port code [ONWARD’14]:
Programming Language
Translation

All of these benefit from a good probabilistic model for code.

www.jsnice.org

Other groups

Natural language to code

Automatic patch generation

Bug finding

Code completion

others...

3

http://www.jsnice.org

Probabilistic model for code
Model is a key part of the Statistical Programming Tools Goal: score programs

Select best among
several candidates

(b)

(a)

Example: Which function is more likely?

function area(a) {
 return a.width * a.height
}

function area(a) {
 return a.width * a.close()
} 4

Statistical code completion
Model is a key part of Statistical Programming Tools

Example:

function area(a) {
 return a.width * a.
} height

width
open
close

Very likely

Less likely

impossible

Goal: score programs

Select best among
several candidates

5

Model usability

Directly applicable to code completion, but is a
 key statistical component for many others tasks:

e.g. natural language to code,
statistical bug localization

6

Existing works: naive models
Most common model: n-gram

Training (3-gram model):

return a . width * a .

+ a . open (mode) ;

+ a . close () ;

* a . height ;

* a . close () ;

3-gram

Count 3-grams

Prediction:

width + a .
close
open
width
height

e.g a.close (2 times)

a.close - 2 times

a.open - 1 times

a.width - 1 times

a.height - 1 times

0.4
0.2
0.2
0.2

Probability

7

Existing works: naive models
Most common model: n-gram

Training (3-gram model):

Count 3-grams

Prediction:

width + a .
close
open
width
height

e.g a.close (2 times)

0.4
0.2
0.2
0.2

Probability

Main problem:

Bad context leads to bad
probability estimates

a.close - 2 times

a.open - 1 times

a.width - 1 times

a.height - 1 times

8

1. Richer conditioning context

return a.width * a.height?

2. Domain Specific Language
encoding Decision Trees

Pred
1

Pred
2

Sub-
model

1

Sub-
model

2

Sub-
model

3
3. Evaluation

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang

9

return x.width * x.height

return y.width * y.height

area = s.width * s.height

s.width = s.width + 10

q.depth * q.width * q.height

Conditioning context

return a.width * a.height

Training (3-gram model): Prediction:

?

Context: relevant for this
prediction

height
width

0.8
0.2

width height

width width

width close

4 times

1 time

0 times

10

Indirection

return a.width * a.height?

Query: x

return a.width * a.height

Context: ctx = f(x)

?

Completion: y

? = height

Model: P(y|f(x))

width height

width width

4 times

1 time

11

Example contexts

return a.width * a.height?

ctx = f(x): last two tokens
3-gram language model

return a.width * a.height?

ctx = f(x): previous actions
on the same object [PLDI’14]

return a.width * a.height?

ctx = f(x): the third token
before the completion

Question:

Which context is
the best?

Query: x

Try many of them
and evaluate

12

Evaluation metric: entropy

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P(info | console.) = 1

P(info | console.) = 1

P(height | a.) = 0.5

P(height | b.) = 0.5

P(left | a.) = 0.5

P(top | b.) = 0.5

Entropy (bits)

0

0

1

1

1

1

Average entropy:
~0.66667 bits

13

Evaluation metric: entropy

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P(info | .) = 1/3

P(info | .) = 1/3

P(height | .) = 1/3

P(height | .) = 1/3

P(left | .) = 1/6

P(top | .) = 1/6

Entropy (bits)

~1.58

~1.58

~1.58

~1.58

~2.58

~2.58

Average entropy:
~1.91 bits

14

Unconditional model

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P(info) = 1/3

P(info) = 1/3

P(height) = 1/3

P(height) = 1/3

P(left) = 1/6

P(top) = 1/6

No conditioning in the probability distribution:
ctx=⊥ Entropy (bits)

~1.58

~1.58

~1.58

~1.58

~2.58

~2.58

Average entropy:
~1.91 bits

15

1. Richer conditioning context

return a.width * a.height?

2. Domain Specific Language
encoding Decision Trees

Pred
1

Pred
2

Sub-
model

1

Sub-
model

2

Sub-
model

3
3. Evaluation

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang

16

Synthesize the best model

Find function f

return a.width * a.height?

Query: x

return a.width * a.height

Context: ctx = f(x)

?

Completion: y

? = height

Model: P(y|f(x))

4 x

1 x

From a domain
specific language

Same basic idea in
Learning Programs from Noisy Data [POPL’16]

17

Main DSL requirement
Program ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Program else Program

Basic part

return a.width * a.height?
ctx = f(x): last two tokens
3-gram language model

return a.width * a.height?
ctx = f(x): previous actions on the same
object [PLDI’14]

return a.width * a.height?
ctx = f(x): empty
Unconditional model

Includes models from a simple DSL

Special empty program ε

Branch part

Combines programs based on
predicates. Language of predicates pred

e.g. are we completing a field name?
Is there another operation on the same

object?

18

Best program

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P(info | console.) = 1

P(info | console.) = 1

P(height | a.) = 1

P(height | b.) = 1

P(left | a.) = 1

P(top | b.) = 1

Entropy (bits)

0

0

0

0

0

0

If there is no prior field access, then use 3-gram model,
otherwise prior field access

19

Synthesis using basic part of DSL
Basic part

return a.width * a.height?
ctx = f(x): last two tokens
3-gram language model

return a.width * a.height?
ctx = f(x): previous actions on the same
object [PLDI’14]

return a.width * a.height?
ctx = f(x): empty
Unconditional model

Includes models from a simple DSL

Involved
See POPL’16

At high level:
Search through
thousands of

candidate
programs that

describe
conditioning.

20

Synthesis of branch part

BranchPart ::= if pred(x) then Program else Program

Space of possible programs:

Search
thousands

Search
thousands

Search
thousands

Billions even without nesting

Infinite with nesting

Goal: find
program with
best entropy

21

Idea 1: synthesis in parts

Synthesize : if pred(x) then ε else ε

1. Synthesize branch with empty programs in leaves

Search
thousands

Goal: find
program with
approximately
best entropy

2. Synthesize leaves separately

Synthesize : if pred(x) then Program else Program

Recursively
call 1

for branch

Recursively
call 1

for branch

Then
synthesize
basic part

Until no
predicate
improves

entropy over
basic ε

This is decision tree learning
22

Synthesis of branch part

BranchPart ::= if pred(x) then Program else Program

Space of possible programs:

Search
thousands

Search
thousands

Search
thousands

Billions even without nesting

Goal: find
program with
approximately
best entropy

Search for each component separately

Performance at expense of possible
non-optimality

23

Idea 2: synthesis in parts

Synthesize : if pred(x) then f’ else f’

2. Synthesize branch

Search
thousands

Goal: find
program with
approximately
best entropy

3. Synthesize leaves separately

Synthesize : if pred(x) then Program else Program

Recursively
call 1

for branch

Recursively
call 1

for branch

Until no
predicate
improves

entropy over
simply f’

If no, return f’

f’ ∊ BasicPart

1. Synthesize basic program Search
thousands

24

Main result

Synthesis procedure 1 is a new formulation of a known
and popular algorithm for decision tree learning: ID3

In fact, we extended ID3 to support programs in decision
tree leaves from the BasicPart DSL fragment

Synthesis procedure 2 is new
And also applicable to decision trees

New name:

E13
25

1. Richer conditioning context

return a.width * a.height?

2. Domain Specific Language
encoding Decision Trees

Pred
1

Pred
2

Sub-
model

1

Sub-
model

2

Sub-
model

3
3. Evaluation

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang

26

Evaluation

150’000 JavaScript files, from GitHub.com,
parsed into ASTs. Public datasets.

100’000 files
Training data
for synthesis

50’000 files
Evaluation
data

Question: How well can we predict program elements?

Synthesis time: ~100 hours

Evaluation files are not on the
same projects as training

27

Accuracy: JavaScript

Task PCFG 3-gram ID3+ E13

API completion 0.04% 30.0% 54% 66.6%

Field access completion 3.2% 32.9% 52.5% 67.0%

Predicting loops 0% 37.5% 65.0% 28.3%

Big improvement over prior
methods

Both ID3+ and E13 learn
useful probabilistic models

Query time for all models is basically the same
(>10K queries per second)

Many more evaluation results in the paper…. Also for Python. Easily applicable to all languages.

28

