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Big Data Revolution
Research area Big Data Application

Computer 
vision

Image labeling

Programming
languages ?
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Understand code/security [POPL’15]:
Deobfuscation
Type Prediction

Statistical programming tools

Write new code
[PLDI’14, POPL’16]: 
Code Completion 

Camera camera = Camera.open();
camera.SetDisplayOrientation(90);

    ?

Port code [ONWARD’14]: 
Programming Language 
Translation

All of these benefit from a good probabilistic model for code.

www.jsnice.org

Other groups

Natural language to code

Automatic patch generation

Bug finding

Code completion

others...
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Probabilistic model for code
Model is a key part of the Statistical Programming Tools Goal: score programs

Select best among 
several candidates

(b)

(a)

Example: Which function is more likely?

function area(a) {
  return a.width * a.height
}

function area(a) {
  return a.width * a.close()
} 4



Statistical code completion
Model is a key part of Statistical Programming Tools

Example:

function area(a) {
  return a.width * a.
} height

width
open
close

Very likely

Less likely

impossible

Goal: score programs

Select best among 
several candidates
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Model usability

Directly applicable to code completion, but is a
 key statistical component for many others tasks:

e.g. natural language to code,
statistical bug localization
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Existing works: naive models
Most common model: n-gram

Training (3-gram model):

return a . width * a .

+ a . open (mode) ;

+ a . close () ;

* a . height ;

* a . close () ; 

3-gram

Count 3-grams

Prediction:

width + a . 
close
open
width
height

e.g  a.close  (2 times)

a.close - 2 times

a.open - 1 times

a.width - 1 times

a.height - 1 times

0.4
0.2
0.2
0.2

Probability
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Existing works: naive models
Most common model: n-gram

Training (3-gram model):

Count 3-grams

Prediction:

width + a . 
close
open
width
height

e.g  a.close  (2 times)

0.4
0.2
0.2
0.2

Probability

Main problem:

Bad context leads to bad 
probability estimates

a.close - 2 times

a.open - 1 times

a.width - 1 times

a.height - 1 times
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1. Richer conditioning context

return a.width * a.height?

2. Domain Specific Language 
encoding Decision Trees

Pred 
1

Pred 
2

Sub-
model 

1

Sub-
model 

2

Sub-
model 

3
3. Evaluation

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang
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return x.width * x.height

return y.width * y.height

area = s.width * s.height

s.width = s.width + 10

q.depth * q.width * q.height

Conditioning context

return a.width * a.height

Training (3-gram model): Prediction:

?

Context: relevant for this 
prediction

height
width

0.8
0.2

width height

width width

width close

4 times

1 time

0 times
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Indirection

return a.width * a.height?

Query: x

return a.width * a.height

Context: ctx = f(x)

?

Completion: y

? = height

Model: P(y|f(x))

width height

width width

4 times

1 time
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Example contexts

return a.width * a.height?

ctx = f(x): last two tokens
3-gram language model

return a.width * a.height?

ctx = f(x): previous actions 
on the same object [PLDI’14]

return a.width * a.height?

ctx = f(x): the third token 
before the completion

Question:

Which context is 
the best?

Query: x

Try many of them 
and evaluate
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Evaluation metric: entropy

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P( info | console. ) = 1

P( info | console. ) = 1

P( height | a. ) = 0.5

P( height | b. ) = 0.5

P( left | a. ) = 0.5

P( top | b. ) = 0.5

Entropy (bits)

0

0

1

1

1

1

Average entropy:
~0.66667 bits
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Evaluation metric: entropy

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P( info | . ) = 1/3

P( info | . ) = 1/3

P( height | . ) = 1/3

P( height | . ) = 1/3

P( left | . ) = 1/6

P( top | . ) = 1/6

Entropy (bits)

~1.58

~1.58

~1.58

~1.58

~2.58

~2.58

Average entropy:
~1.91 bits
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Unconditional model

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P( info ) = 1/3

P( info ) = 1/3

P( height ) = 1/3

P( height ) = 1/3

P( left ) = 1/6

P( top ) = 1/6

No conditioning in the probability distribution:
ctx=⊥ Entropy (bits)

~1.58

~1.58

~1.58

~1.58

~2.58

~2.58

Average entropy:
~1.91 bits
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1. Richer conditioning context

return a.width * a.height?

2. Domain Specific Language 
encoding Decision Trees

Pred 
1

Pred 
2

Sub-
model 

1

Sub-
model 

2

Sub-
model 

3
3. Evaluation

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang
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Synthesize the best model

Find function f

return a.width * a.height?

Query: x

return a.width * a.height

Context: ctx = f(x)

?

Completion: y

? = height

Model: P(y|f(x))

4 x

1 x

From a domain 
specific language

Same basic idea in
Learning Programs from Noisy Data [POPL’16]
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Main DSL requirement
Program ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Program else Program

Basic part

return a.width * a.height?
ctx = f(x): last two tokens
3-gram language model

return a.width * a.height?
ctx = f(x): previous actions on the same 
object [PLDI’14]

return a.width * a.height?
ctx = f(x): empty
Unconditional model

Includes models from a simple DSL

Special empty program  ε

Branch part

Combines programs based on 
predicates. Language of predicates pred 

e.g. are we completing a field name?
Is there another operation on the same 

object?
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Best program

console. info

console. info

a.width * a. height

b.width * b. height

a.right - a. left

b.bottom - b. top

P( info | console. ) = 1

P( info | console. ) = 1

P( height | a. ) = 1

P( height | b. ) = 1

P( left | a. ) = 1

P( top | b. ) = 1

Entropy (bits)

0

0

0

0

0

0

If there is no prior field access, then use 3-gram model, 
otherwise prior field access
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Synthesis using basic part of DSL
Basic part

return a.width * a.height?
ctx = f(x): last two tokens
3-gram language model

return a.width * a.height?
ctx = f(x): previous actions on the same 
object [PLDI’14]

return a.width * a.height?
ctx = f(x): empty
Unconditional model

Includes models from a simple DSL

Involved
See POPL’16

At high level:
Search through 
thousands of 

candidate 
programs that 

describe 
conditioning.
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Synthesis of branch part

BranchPart ::= if pred(x) then Program else Program

Space of possible programs:

Search 
thousands

Search 
thousands

Search 
thousands

Billions even without nesting

Infinite with nesting

Goal: find 
program with  
best entropy
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Idea 1: synthesis in parts

Synthesize : if pred(x) then ε else ε

1. Synthesize branch with empty programs in leaves 

Search 
thousands

Goal: find 
program with 
approximately 
best entropy

2. Synthesize leaves separately 

Synthesize : if pred(x) then Program else Program

Recursively 
call 1

for branch

Recursively 
call 1

for branch

Then 
synthesize 
basic part

Until no 
predicate 
improves 

entropy over 
basic ε

This is decision tree learning
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Synthesis of branch part

BranchPart ::= if pred(x) then Program else Program

Space of possible programs:

Search 
thousands

Search 
thousands

Search 
thousands

Billions even without nesting

Goal: find 
program with 
approximately 
best entropy

Search for each component separately

Performance at expense of possible 
non-optimality
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Idea 2: synthesis in parts

Synthesize :  if pred(x) then f’ else f’

2. Synthesize branch  

Search 
thousands

Goal: find 
program with 
approximately 
best entropy

3. Synthesize leaves separately 

Synthesize :  if pred(x) then Program else Program

Recursively 
call 1

for branch

Recursively 
call 1

for branch

Until no 
predicate 
improves 

entropy over 
simply f’

If no, return f’

f’ ∊ BasicPart 

1. Synthesize basic program  Search 
thousands
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Main result

Synthesis procedure 1 is a new formulation of a known 
and popular algorithm for decision tree learning: ID3

In fact, we extended ID3 to support programs in decision 
tree leaves from the   BasicPart   DSL fragment 

Synthesis procedure 2 is new
And also applicable to decision trees

New name:

E13
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1. Richer conditioning context

return a.width * a.height?

2. Domain Specific Language 
encoding Decision Trees

Pred 
1

Pred 
2

Sub-
model 

1

Sub-
model 

2

Sub-
model 

3
3. Evaluation

Lang ::= BasicPart | BranchPart

BranchPart ::= if pred(x) then Lang else Lang
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Evaluation

150’000 JavaScript files, from GitHub.com,
parsed into ASTs.            Public datasets.

100’000 files
Training data
for synthesis

50’000 files
Evaluation 
data

Question: How well can we predict program elements?

Synthesis time: ~100 hours

Evaluation files are not on the 
same projects as training
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Accuracy: JavaScript

Task PCFG 3-gram ID3+ E13

API completion 0.04% 30.0% 54% 66.6%

Field access completion 3.2% 32.9% 52.5% 67.0%

Predicting loops 0% 37.5% 65.0% 28.3%

Big improvement over prior 
methods

Both ID3+ and E13 learn
useful probabilistic models

Query time for all models is basically the same
(>10K queries per second)

Many more evaluation results in the paper…. Also for Python. Easily applicable to all languages.
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