Learning from “Big Code”

21th PeWe, April 7, 2017

Pavol Bielik
Software Reliability Lab

Department of Computer Science
ETH Zurich

European Research Council

Supporting top researchers
from anywhere in the world

AT
O
rc Eslablished by the European Commission
™ ::::E
.

Big Data Impact

Natural Language Processing
(e.g., machine translation)

Google
Translate G+ |

P — e pe——— |

What is the answer to the Question of Life, the Universe, oyom, sagraémepamicdiqeu:gsidas(gmomnas?
and Everything?

$ OmE- * DA < # Suggest an edit

Computer Vision
(e.g., Image captioning)

A group of people shopping
at an outdoor market.
There are many vegetables
at the fruit stand.

Medical Computing
(e.g., disease prediction)

I' EIENEDI

Big Data Impact

Google
Natural Language Processing - _ -
(e g m a C h i n e t ra n S la ti O n) Wr:ialtzis trr;tehans‘;lver to the Question of Life, the Universe,* 50m, sgoacaepaamiadqeuiasidas(gmonas?
: ‘ , an Ve INg ¢
S el 2 Socgestanc

A group of people shopping
at an outdoor market.
There are many vegetables
at the fruit stand.

Computer Vision
(e.g., image captioning)

Medical Computing
(e.g., disease prediction)

I' EIENEDI

Can we bring this revolution to programmers?

Vision

Create new kinds of software tools that leverage
massive codebases to solve problems beyond what
Is possible with traditional techniques.

number of

. 15 million repositories
repositories

Google me Microsoft

Billions of lines of code

High quality, tested,
maintained programs

last 8 years

Statistical Software Tools

Write new code: Port code:
Code Completion Programming Language Translation
o cx = [laa ==
Camera camera = Camera.open(); Console WriteLine("Hi"); System.out.printin("Hi");
camera.SetDisplayOrientation(90);
?
E ¥
Understand code/security: Debug code:
JavaScript Deobfuscation Statistical Bug Detection

Type Prediction

likely error

%A; x in range(a):
JS HICE print a[x]

All of these benefit from the “Big Code” and lead to applications not possible with previous techniques

Statistical Software Tools

Understand code/security:
JavaScript Deobfuscation
Type Prediction

1 NicE

All of these benefit from the “Big Code” and lead to applications not possible with previous techniques

Code understanding/security

& UBS s s s s see . B

Apply online

Sign up for a banking package from the
comlort of your couch. Simply use our app -
it couldn't be easier.

first year™

ey . #ggu‘ﬁuq o

= switzerland ‘Advice and products Knowledge ‘About Uss and Careers

JavaScript

Code understanding/security

free of
B charge for the
firstyear

aaaaaaaaa

JavaScript

savePassword(user, password) —> SEUEEEn) —> B(d, ¢)

Minification

Code understanding/security

T
IPhOﬂe JavaScript an>0ID

savePassword(user, password) —> SEUEEEn) —> B(d, ¢)

Minification

Code understanding/security

- oms
A e ¥
= IS’ :
rrrrr — - %Jﬂ
+
Security Analyst
IPhOﬂe JavaScript anNnd>=x01D

Obfuscation/
savePassword(user, password) —> —> B(d, ¢)

Code understanding/security

- oms
A e ¥
= IS’ :
rrrrr — - %Jﬂ
+
Security Analyst
IPhOﬂe JavaScript anNnd>=x01D

Obfuscation/
savePassword(user, password) —> Minification —> B(d, ¢)

<~ B(d, o)

savePassword(user, password) <€—

Code understanding/security

- oms
A e ¥
= IS’ :
rrrrr — - %Jﬂ
+
Security Analyst
IPhOﬂe JavaScript anNnd>=x01D

Obfuscation/
savePassword(user, password) —> Minification —> B(d, ¢)

savePassword(user, password) <€— ANy NICE < B(d, ©)

available online:

WWW.|snice.org

http://www.jsnice.org
http://www.jsnice.org

30, 000 Users in 1st week

Impact

30, 000 Users in 1st week

Alex Vanston @ mrvdot - 7 Jun
[I've been looking for this fﬂr years]JS NICE buff.ly/1pQ5aqfr #javascript
#unminify #deobfuscate #makeltReadable

pieter-paulus @vertongen - 23 J
? Wow, deobfuscate your Javascript with machine leaming jsnice.org #avascript
Hjsnice

- Antarctic Design @antarcticdesign - 14 Jan
a De-obfuscate #JavaScript with JSNice - jsnice.org - so cool and super useful!

4 ChristophePorteneuve @ porteneuve - 8 Oct
: JSNice just outputted mmepmpresswe results for production- grade|rnasswe

concatenated, uglified JS | have: jsnice.org

Impact

30, 000 Users in 1st week

L. 50 fantastic freebies for
web designers, July 2014

ieter-paulus e
e s Y By Juan Pablo Sarmiento |

Wow, deobfuscate

Hjsnice

L
o BCodebeekz

De-obfuscate #JavaScript with JSNice - jsnice.

20 Essential Tools for Coders

| 1M

14 Essential Tools for Programmers

Everyone knows very well, that when it comes to web development than
coding is the most important part where every web developer spends it ...

ChristophePorteneuve o portensuve - 5 Oct
o JSNice just outputted some impressive results f

concatenated, uglified JS | have: jsnice.org

How to build such tools?

Understand code/security:
JavaScript Deobfuscation
Type Prediction

1 NicE

JS MY Statistical Type Inference and Renaming

function get(a, b, c) {
Applications b.open("GET", a, false);
b.send(c);

Predicting types Predicting names

\/

// @param {string} url

// @param {Object} client

// @param {string} data

function get(url, client, data) {
client.open("GET", url, false);
client.send(data);

What is a suitable program representation?

Natural Language Processing

Applications S
NP VP
The dog saw a D /\N V/Np\pp
Intermediate - et
: | 1 | \ VAN
Representation man in the park the dog saw Det N P NNP
1A\
a man in Det N
. |
Programming Languages the park
«
=’ - ?

]avaScfipt Java

What is a suitable program representation?

Applications

Seqguences Trees
Intermediate =
Representatlon req — {<open, 0>, <send, 0>} a/ N +
source — {..., <open, 2>} N
X y
Graphical Models Feature Vectors

req — (0,0,1,1,0)
source — (1,0,0,0,0)

What is a suitable program representation?

Applications

Seqguences Trees
Intermediate =
Representatlon req — {<open, 0>, <send, 0>} a/ N +
source — {..., <open, 2>} N
X y
Graphical Models Feature Vectors

req — (0,0,1,1,0)
source — (1,0,0,0,0)

_ J

s Representation

Applications .
function get(a, b, c) {

b.open("GET", a, false);

Intermediate b.send(c);
Representation }

s Representation

Applications .
function get(a, b, c) {

b.open("GET", a, false);

Intermediate b.send(c);
Representation T

O &

s Representation

Applications .
function get(a, b, c) {

b.open("GET", a, false);

Intermediate b.send(c);
Representation }

s Representation

Applications

function get(a, b, c) {
b.open("GET", a, false);

Intermediate b.send(c);
Representation }

s Representation

Applications .
function get(a, b, c) {

b.open("GET", a, false);

Intermediate b.send(c);
Representation }

Analyze Program

(PL)

s Representation

Applications

Intermediate
Representation

Analyze Program

(PL)

function get(a, b, c) {
b.open("GET", a, false);

b.send(c);

Applications

Intermediate
Representation

Analyze Program
(PL)

s Representation

function get(a, b, c) {

b.open("GET", a, false);

b.send(c);

s Representation

Applications

function get(a, b, c) {
b.open("GET", a, false);

Intermediate b.send(c);
Representation }

Analyze Program
(PL)

ssEEA Representation

Applications

Intermediate
Representation

Analyze Program

(PL)

Call graph analysis Alias analysis
Who are the callers of get function? b and c point to the same object?

function get(a, b, c) {
b.open("GET", a, false);

b.send(c);
Scope analysis Typestate analysis
Program location where b was defined? State of the object b?

Importance of Program Analysis

Applications
[Precision vs % of data used]

Intermediate 100%
Representation

Analyze Program = no alias analysis

(PL)

® with alias analysis

50%

0%
1% 10% 100%

Markov Network

Undirected graphical model

Azl Captures dependencies between facts to be predicted

nodes = random variables
Intermediate

. edges = dependencies
Representation J P

Analyze Program
(PL)

Train Model

(ML)

P(get,c,a) =09 (a c) *9,(a get) *o,(c, get) *... / Z(get, c, a)

makes P a valid probability distribution
very expensive to compute

Conditional Random Fields

(J. Lafferty, A. McCallum, F. Pereira, ICML 2001)

Undirected graphical model

Azl Captures dependencies between facts to be predicted

Captures conditional distribution on known facts
Intermediate
Representation

Analyze Program
(PL)

Train Model

(ML)

P(Y [X) =0,(a c) " 9,(a get) * 9,(c, get) * ... / Z(Y)

makes P a valid probability distribution
very expensive to compute

MAP inference example

argmax,, P(Y|X)
T2 >
e Copen >
Cfalse >
= >

b.open("GET", a, false);

MAP inference example

argmax,, P(Y|X)
4)
known - X
. ?D
@ open |[x unknown - Y
5 false D

_ J

b.open("GET", a, false);

open

open

open

open

open

MAP inference example

C

req

client

t

link

url

address

argmax_. P(c,t|v=open)

Score

6

5

open ' ¢

client url
o client link
req link

b.open("GET", a, false);

MAP inference example

argmax_. P(c,t|v=open)

\% C Score
Py | Maximize product of scores:

open req 6
X7k —
open client 5 ¢ 6 7 2 - 84‘

@ t C Score

client url 8
client link 5
\% t Score »
| req link 2
open link 7 |
P, open url 5

b.open("GET", a, false);

open address 2

MAP inference example

argmax_. P(c,t|v=open)

\% C Score
Py Maximize product of scores:

open req 6
open client 5 | @ 5*7*5 - 175

@ t C Score

client url 8
| client link 5
\% t Score »
req link 2
open link 7 |
P, open url 5

b.open("GET", a, false);

open address 2

MAP inference example

argmax_. P(c,t|v=open)

\% C Score
Py Maximize product of scores:

open req 6
X XkQ —
open client 5 | @ 5 5 8 - 200

@ t C Score

| client url 8
client link 5
\% t Score ¢
req link 2
open link 7
P, open url 5 |

b.open("GET", a, false);

open address 2

Our goal is to find the most likely assignment of y that
satisfies the constraints, also known as MAP inference:

y = argmax , P(y’|x) = argmax , 1/Z T ¢,(xy)

Good news:
the expensive partition function Z() is unnecessary

Our goal is to find the most likely assignment of y that
satisfies the constraints, also known as MAP inference:

y = argmax , P(y’|x) = argmax , 1/Z T ¢,(xy)

Good news:
the expensive partition function Z() is unnecessary

Bad news:
computing the argmax is still NP-hard (Max-SAT)

Our goal is to find the most likely assignment of y that
satisfies the constraints, also known as MAP inference:

y = argmax , P(y’|x) = argmax , 1/Z T ¢,(xy)

Good news:
many approximate algorithm exists (Variational Methods, EM,
Gibbs sampling, Elimination Algorithm, Junction-Tree algorithm)

Our goal is to find the most likely assignment of y that
satisfies the constraints, also known as MAP inference:

y = argmax , P(y’|x) = argmax , 1/Z T ¢,(xy)

Good news:

many approximate algorithm exists (Variational Methods, EM,
Gibbs sampling, Elimination Algorithm, Junction-Tree algorithm)

Bad news:
still too slow for learning

Our goal is to find the most likely assignment of y that
satisfies the constraints, also known as MAP inference:

y = argmax , P(y’|x) = argmax , 1/Z T ¢,(xy)

Good news:
approximate algorithms designed to fit our setting

Learning

P(y|x)=1/7 exp 2 Af(xy)

Learning finds weights i from training data

» = {X(]) , y(]) }]‘=1__n

programs with facts of interest already manually annotated

Big codebase to learn from
Programmers have spent countless hours to develop, maintain and annotate

Structured SVM

Generalizes SVM, learns weights such that:

Vi Vy Z Af(xVy0) > 20 f (xDy) + Aly,yY)
— ii ii

for all training data samples / / \

the given prediction is better than any other prediction by at least a margin

Training procedure:

N.Ratliff, J. Bagnell, M. Zinkevich: (Online) Subgradient Methods for Structured Prediction, AlStats’07

Memory efficient
Fast and scalable

Structured Prediction for Programs

30 nodes o
400 edges Time: miliseconds
T — Program MAP * types , ==
- - Analysis Inference + names - -
Prediction " N?JEE? gi:f
. o
. — _ 150MB
Learning \._A_.z

Program SSVM

Time: 10 Hours

Analysis Learning

alias analysis /M feature functions for names
call analysis 70K feature functions for types

Programming with “Big Code”

Applications Code completion Program synthesis Translation
Deobfuscation Feedback generation
i Graphical Models
Intermed|a’.[e Sequences (sentences) Translation Table p
Representation Trees Feature Vectors
Analyze Program alias analysis control-flow analysis
(PL) scope analysis typestate analysis
Train Model Neural Networks SVM Structured SYM
(ML) N-gram language model
Ouery Model argmax P(y | x) Greedy
=4 yeo MAP Inference

. . . _ http://www.nice2predict.org/ -
More information and tutorials at: http//plmLethz.ch/ m 2 Predlct

http://www.nice2predict.org/
http://www.nice2predict.org/
http://plml.ethz.ch/
http://plml.ethz.ch/

Statistical Software Tools

Write new code:
Code Completion

Camera camera = Camera.open();
camera.SetDisplayOrientation(90);

Understand code/security:
JavaScript Deobfuscation
Type Prediction

i nice.

Port code:
Programming Language Translation

Console WriteLine("Hi") System.out.printin("Hi")

Debug code:
Statistical Bug Detection

for x in range(a):
print a[x]

Statistical Software Tools

Write new code:
Code Completion

Camera camera = Camera.open();
camera.SetDisplayOrientation(90);

4

Understand code/security:
JavaScript Deobfuscation
Type Prediction

Port code:

Programming Language Translation
o = [[lava ==
Console WriteLine("Hi"); System.out.printin("Hi");
E ¥

Debug code:

Statistical Bug Detection

likely error

for x in range(a):
print a[x]

Probabilistic Model for Code

Model is a key part of the Statistical Programming Tools Goal: score programs

Select best among
several candidates

Probabilistic Model for Code

Model is a key part of the Statistical Programming Tools

Example: Which function is more likely?

function
return

function
return

area(a) {
a.width * a.height

area(a) {
a.width * a.close()

Goal: score programs

Select best among
several candidates

Statistical Code Completion

Model is a key part of Statistical Programming Tools Goal: score programs

Select best among
several candidates

Example:

function area(a) {
return a.width * a.

} he-i_g ht Very likely
width Less likely
open

close > impossible

Probabilistic Model for Code

Directly applicable to code completion, but is a
key statistical component for many others tasks:
e.g. natural language to code,
statistical bug localization

Model Requirements

Existing Programs Learning Model

Google m& Microsoft

Probabilistic
) Model

Widely Efficient High Explainable
Applicable Learning Precision Predictions

Observation

Regularities in code are similar
to reqularities in natural language

The quick brown fox jumps over the lazy ?

Observation

Regularities in code are similar
to reqularities in natural language

The quick brown fox jumps over the lazy dog

Observation

Regularities in code are similar
to reqularities in natural language

The quick brown fox jumps over the lazy dog

file = open(filename, "r")
file.??

Observation

Regularities in code are similar
to reqularities in natural language

The quick brown fox jumps over the lazy dog

file = open(filename, "r")
file.read()

N-gram Language Model

Conditional probability only on previous n-1 words

#w,_ W, W)
W,)R
i-1

#w,_ ., W)

P(w, [w,...w _)=P(w, |w

i-n+1 °*°

n-1 words

#(n-gram) - number of occurrences of n-gram in training data

N-gram Language Model

Conditional probability only on previous n-1 words

- ~#(Winet o WigW3)
Pw [w,..w J)=P(w |w__ ..w_)= F(w "

i-n+1 °°° i1

n-1 words

Training is achieved by counting n-grams (3-gram)

#(brown fox jumped)
P(jumped | The quick brown fox) = P(jumped | brown fox) =

#(brown fox)

#(n-gram) - number of occurrences of n-gram in training data

N-gram Language Model

return f . height * scale;

f.width + f.[2

f . open (mode) ;

f . close () ;
2 * f . width;

f . close ()

N-gram Language Model

Training (3-gram model)

f.width + f.[2

f . height

f . open (mode) ;

f . close () ;
f . width;

f . close ()
\)

Y
3-gram

N-gram Language Model

f.width + f.l0270 p

Training (3-gram model)

f . height

f . open (mode) ;

close 0.4

f . close () ; open 0.2
width 0.2

f . width; height 0.2

f . close ()
\)

Y
3-gram

N-gram Language Model

Conditioning Accuracy
Last two tokens, Hindle et. al. [ICSE’12] 22.2%
Main Problem: f.width +|(f.| 2 P
close 0.4
Bad context leads to bad CRETR 0. 2
probability estimates ke ©-2
height 0.2

Better Context

return x * x height
return y * y height
area = s * s height

slwidth|= s.width + 10

f.width + f.[2

q.depth * q * q height

Better Context

return x * x height

fJwidth|+ f.00200

return vy -width * y height .
Context: relevant for | netght 0.8
area = S* s [height this prediction width 0.2
open 0.0
s|width|= s width + 10 close 0.0

q.depth * q * q/ height

Better Context

Conditioning Accuracy

Last two tokens, Hindle et. al. [ICSE'12] 22.2%

Last two APIs, Raychev et. al. [PLDI'14] 30.4%

JavaScript APIs

Conditioning Accuracy
Last two tokens, Hindle et. al. [ICSE’12] 22.2%
Last two APIs, Raychev et. al. [PLDI'14] 30.4%

Is this the best we can do?

JavaScript APIs

Conditioning Accuracy
Last two tokens, Hindle et. al. [ICSE’12] 22.2%
Last two APIs, Raychev et. al. [PLDI'14] 30.4%

Is this the best we can do?

Program synthesis 66.4%

JavaScript APIs

Conditioning Accuracy
Last two tokens, Hindle et. al. [ICSE’12] 22.2%
Last two APIs, Raychev et. al. [PLDI'14] 30.4%

Last three APIs

Declaration Site + Last two APIs

Variable Name + Method Name + Last API

How do we know
that which is the
best context?

JavaScript APIs

Conditioning Accuracy
Last two tokens, Hindle et. al. [ICSE’12] 22.2%
Last two APIs, Raychev et. al. [PLDI'14] 30.4%

Last three APIs

Declaration Site + Last two APIs

Variable Name + Method Name + Last API

How do we know
that which is the
best context?

JavaScript APIs

|dentifiers
Strings
Numbers
Arguments
Properties
Statements
Regkxp

Ctrnintuira

Solution: Synthesise the Best Model

{width} = f(x|.width|+ x.[0200)

Synthesise a function ffrom a domain specific
language that explains the data

Function Examples

for (j = 0; j < groups.length; j++) {
idsInGroup = groups[j].filter(
function(id) { return id >= 42; }
)
f(p1) = { } if (idsInGroup.length == 0) {

}
}

Function Examples

for (j = 0; j < groups.length; j++) {
idsInGroup = groups[j].filter(
function(id) { return id >= 42; }

)5
f(pl) = { if, } EI(idsInGr‘oup.length == 0) |{

Function Examples

for (j = 0; j < groups.length; j++) {
idsInGroup = groups[j].filter(
function(id) { return id >= 42; }

)5
f(P) = { if, } EI(idsInGr‘oup.length == 0) [{
' length==0 I

}
}

elem.notify(..., {
position: ‘top’,
hide: false,

f(p2)={ } B

)

Function Examples

for (j = 0; j < groups.length; j++) {
idsInGroup = groups[j].filter(
function(id) { return id >= 42; }

)5
f(pl) = { if, } EI(idsInGr‘oup.length == 0) [{
length==0 I

}
}

elemfnotify(..., {
position: |“top’,

notif
Y hide: |false,

T pz) = { position, } -

hide 1Y)

F(3E) -

I

(Ve
o
-
=
(@)
D

Conditioning
Context

N
o
Q
D

Synthesise a function ffrom a domain specific
language that explains the data

FZ50) -
Source
Code

Ly -
Abstract Conditioning
Syntax Tree Context

Synthesise a function ffrom a domain specific
language that explains the data

Function Representation

In general:
Unrestricted programs (Turing complete)

Our Work:
TCond Language for navigating over trees
and accumulating context

TCond ::= & | WriteOp TCond | MoveOp TCond | BranchProg
BranchProg ::= 1i1f pred(x) then TCond else TCond
MoveOp ::= Up, Left, Right, DownFirst, DownLast,

NextDFS, PrevDFS, NextLeaf, PrevlLeaf,
PrevNodeType, PrevNodeValue, PrevNodeContext

WriteOp ::= WriteValue, WriteType, WritePos

Expressing functions: TCond Language

NN

TCond 1=
BranchProg ::=

MoveOp S

WriteOp 1=

WriteValue

y<—v

€ | WriteOp TCond | MoveOp TCond | BranchProg

if pred(x) then TCond else TCond

Up, Left, Right, DownFirst, DownLast,
NextDFS, PrevDFS, NextLeaf, PrevlLeaf,
PrevNodeType, PrevNodeValue, PrevNodeContext

WriteValue, WriteType, WritePos

Query TCond Y

elem.notify (

4

4

position: ‘top’,
hide: false,
?

Query TCond Y

elem.notify (LLeft .
7 WriteValue {hide}

4

position: ‘top’,
hidet false,
?

Query TCond Y

elem.notify (Left {}
C WriteValue {hide}
e ee Up {hide}
{ WritePos {hide, 3}

position: ‘top’,
hidet false,
?

Query TCond Y

elem.notify TLLeft {}
> 0 WriteValue {hide}
%“ ' Up {hide}
. ., WritePos {hide, 3}
position: top’, .
hidet false, Up {hlde’ 3}
> DownFirst {hide, 3}
} DownlLast {hide, 3}

) ; WriteValue {hide, 3, notify}

Query TCond y

elem.notify TLLeft {}
> 0 WriteValue {hide}

%“ ' Up {hide}
bosition: ‘top’, WritePos {hide, 3}
hide} false, Up {hide, 3}
> DownFirst {hide, 3}

} DownlLast {hide, 3}

) ; WriteValue {hide, 3, notify}
\2

{ Previous Property, Parameter Position, APl name }

Results

Probabilistic Model of JavaScript Language

20k Learning 100k Training 50k Blind Set

GitHub

JavaScript APIs

Conditioning Accuracy
Last two tokens, Hindle et. al. [ICSE’12] 22.2%
Last two APIs, Raychev et. al. [PLDI'14] 30.4%

Program synthesis 66.4%

JavaScript Structure

Model Accuracy
PCFG 51.1%
N-gram 71.3%
Naive Bayes 44.2%
SYM 70.5%

Program synthesis 81.5%

JavaScript Values

Accuracy Example
Identifier 62% contains = jQuery ..
Property 65% start = list.length;
String 52% ‘[Y + attrs + ‘]!
Number 64% canvas (xy[0], xy[l], ..)
RegExp 66% line.replace (/ (|)+/, ..)
UnaryExpr 97 % if (levents || !..)
BinaryExpr 74% while (++index < ..)

LogicalExpr 92% frame = frame ||

Model Requirements

Existing Programs Learning Model

Google m& Microsoft

Probabilistic
) Model

Widely Efficient High Explainable
Applicable Learning Precision Predictions

TCond

MoveOp ::

WriteOp ::

e | WriteOp TCond | MoveOp TCond
Up, Left, Right, ...

WriteValue, WriteType, ...

TCond Language

Learning

Program Synthesis
Enumerative search
Genetic programming
Decision tree learning
MCMC

- \

oo = @rg min cost(D, f)
f € TCond

- 1
d| << |D|
|cost(d, f) - cost(D,f)| <&
Representative sampling

Applications

Writing new Code

Allocation site
Analysis

Handwriting

Finding Bugs Recognition

Porting Code Points-to Analysis opeech

Recognition

Neural Networks Character-level
Language Models

Probabilistic
Model s

S——

Static Analysis

N 0 A
Google ms Microsoft

1\

The quick

brown fox
jumps over
the lazy dog

Work @ ETH Zurich

me.' Veselin Pavol
Martin Raychev Bielik
Vechev y

Christine Pascal Benjamin Svetoslav Benjamin
Zeller Roos Bischel Karaivanov Mularczyk

Learning from “Big Code”

Applications

Intermediate
Representation

Analyze Program
(PL)

Train Model
(ML)

Query Model

Name and Types
Prediction

Graphical Models

Feature Vectors

Structured SVM

Greedy
MAP Inference

I3 2 Predict

Key Idea:
Learn a function fthat explains the data.
The function dynamically obtains the best
conditioning context for a given query.

Probabilistic
Model

oo = @rg min cost(D, f)
f € DSL

1\

Google B8 Microsoft

ﬁ % UBS
github

http://plmLethz.ch/

http://plml.ethz.ch/
http://plml.ethz.ch/

