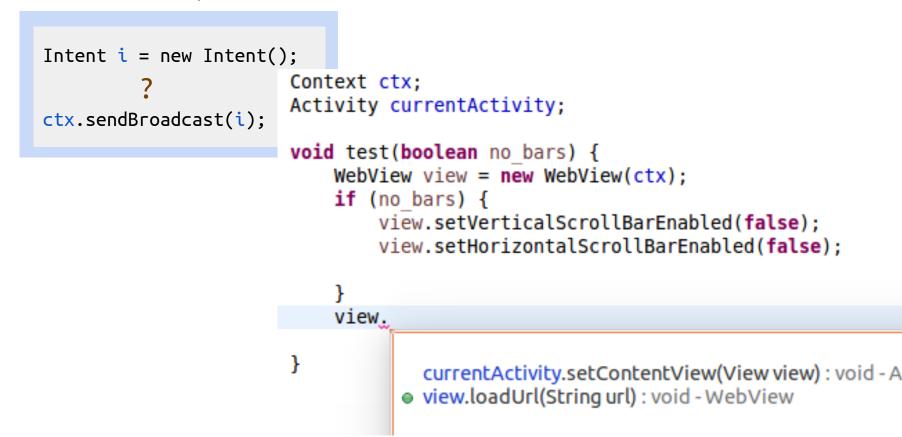

Programming with "Big Code": Lessons, Techniques, Applications

Pavol Bielik, Veselin Raychev, Martin Vechev Department of Computer Science **ETH Zurich**

Work @ ETH Zurich

Work on "Big Code" started a few years ago


Prof. Martin Vechev Prof. Veselin Andreas Raychev

Pavol Bielik

Svetoslav Karaivanov Christine Zeller Pascal Roos

Code Completion with Statistical Language Models, PLDI 2014 Machine Translation for Programming Languages, Onward 2014 Predicting Program Properties from "Big Code", POPL 2015 Fast and Precise Statistical Code Completion, ETH TR Statistical Feedback Generation for Programs, ETH TR Programming with Big Code: Lessons, Techniques and Applications, SNAPL 2015

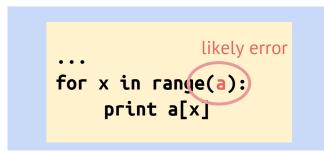
[PLDI 14] SLANG: Code Completion

[PLDI 14] SLANG: Code Completion

```
Intent i = new Intent();
    ?
ctx.sendBroadcast(i);
```

[Onward 14] Programming Language Translation

> P(Java | C#) P(C# | Java) P(Java)


[PLDI 14] SLANG: Code Completion

```
Intent i = new Intent();
    ?
ctx.sendBroadcast(i);
```

[Onward 14] Programming Language Translation

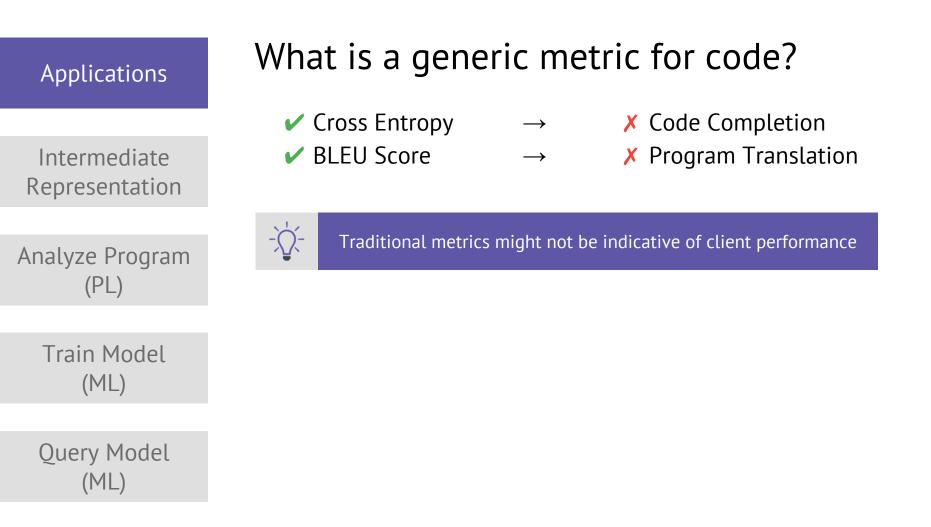
> P(Java | C#) P(C# | Java) P(Java)

[submitted] Statistical Feedback Generation

[PLDI 14] SLANG: Code Completion

```
Intent i = new Intent();
    ?
ctx.sendBroadcast(i);
```

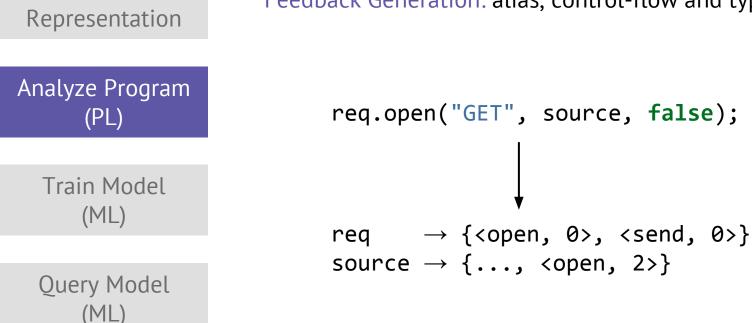
[POPL 15] JSNice: Deobfuscation Type Prediction



[Onward 14] Programming Language Translation

> P(Java | C#) P(C# | Java) P(Java)

[submitted] Statistical Feedback Generation


Applications	What is the best program representation?
Intermediate Representation	
Analyze Program (PL)	
Train Model (ML)	
Query Model (ML)	

Applications	What is the best program representation?		
Intermediate Representation	Sequences	Trees	
Analyze Program	req \rightarrow { <open, 0="">, <send, 0="">} source \rightarrow {, <open, 2="">}</open,></send,></open,>	a + y	
(PL) Train Model	Graphical Models	Feature Vectors	
(ML)		req \rightarrow (0,0,1,1,0) source \rightarrow (1,0,0,0,0)	
Query Model (ML)			

Applications	What is the best program representation?			
Intermediate Representation	-🏠 Choosing the right rep	presentation is crucial		
Analyze Program	Feedback Generation: Sequence representations			
(PL)	Allamanis et. al. [2013]	46.4%		
Train Model (ML)	Hsiao et. al. [2014]	50.8%		
	Incorporate semantic information	75.3%		
Query Model	Incorporate dataflow analysis	86.3%		
(ML)				

How to extract program representation?

SLANG (APIs): alias and typestate analysis JSNice (Variable Names): scope and alias analysis Feedback Generation: alias, control-flow and typestate analysis

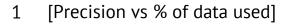
Applications

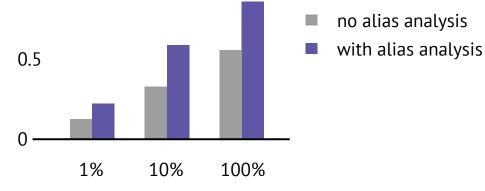
Intermediate

Applications

Intermediate Representation

Analyze Program (PL)


> Train Model (ML)


Query Model (ML)

How to extract program representation?

SLANG (APIs): alias and typestate analysis JSNice (Variable Names): scope and alias analysis Feedback Generation: alias, control-flow and typestate analysis

Design scalable yet precise enough algorithms

Applications	
Intermediate Representation	
Analyze Program (PL)	

Train Model (ML)

Query Model (ML)

What is the suitable probabilistic model?

N-gram language model Probabilistic context-free grammars **Neural networks** (Structured) Support vector machine **Conditional Random Fields**

...

Applications	What is the suitable probabilistic model?			
	N-gram language model			
Intermediate Representation	Probabilistic context-free grammars Neural networks			
Representation	(Structured) Support vector machine			
Analyze Program	Conditional Random Fields - Structured prediction is critical			
(PL)				
Train Model (ML)		Baseline	25.3%	
		Independent	54.1%	
Query Model (ML)		Structured	63.4%	

Programming with "Big Code"

Applications	Code completion	Program synthesis	Translation
	Deobfusca	ation	Feedback generation
Intermediate	Sequences (sentences)	Translation Table	Graphical Models
Representation	Trees		Feature Vectors
Analyze Program	alias analysis co	ntrol-flow analysis	
(PL)	scope analysis	typestate analysis	
Train Model	Neural Networks	SVM	Structured SVM
(ML)	N-gram lang	guage model	
Query Model	$\begin{array}{l} \text{argmax P(y)} \\ y \in \Omega \end{array}$	x)	

Programming with "Big Code"

Applications	Code completion	Program synthesis	Translation
	Deobfusca	ation Fe	eedback generation
Intermediate	Sequences (sentences)	Translation Table	Graphical Models
Representation	Trees		Feature Vectors
Analyze Program	alias analysis cor	ntrol-flow analysis	
(PL)	scope analysis	typestate analysis	
Train Model (ML)	Neural Networks N-gram lang	Structured SVM	
Query Model	$\begin{array}{l} \text{argmax P(y)} \\ y \in \Omega \end{array}$	Greedy MAP Inference	
More information and	d tutorials at: <u>http://www.nice</u> <u>http://www.srl.ir</u>	<u>2predict.org/</u> if.ethz.ch/spas.php	NICE 2 Predict

General framework

http://www.nice2predict.org/

We have open-sourced our prediction engine and we are extending it with new capabilities

Upcoming PLDI'15 tutorial

Programming with "Big Code"

Applications	Code completion	Program synthesis	Translation
	Deobfusca	ation Fe	eedback generation
Intermediate	Sequences (sentences)	Translation Table	Graphical Models
Representation	Trees		Feature Vectors
Analyze Program	alias analysis cor	ntrol-flow analysis	
(PL)	scope analysis	typestate analysis	
Train Model (ML)	Neural Networks N-gram lang	Structured SVM	
Query Model	$\begin{array}{l} \text{argmax P(y)} \\ y \in \Omega \end{array}$	Greedy MAP Inference	
More information and	d tutorials at: <u>http://www.nice</u> <u>http://www.srl.ir</u>	<u>2predict.org/</u> if.ethz.ch/spas.php	NICE 2 Predict