Learning-Based Probabilistic Programming Tools

Facebook Fellows Research Workshop 28th September 2017, Menlo Park, CA

Pavol Bielik

Software Reliability Lab
Department of Computer Science
ETH Zurich

facebook

<img class="spotlight" alt="Image may contain: 3 people, people smiling,
people sitting, laptop and indoor" src="...">

Vision

Create new kinds of software tools that leverage massive codebases to solve problems beyond what is possible with traditional techniques.

number of repositories

last 8 years

15 million repositories

Billions of lines of code

High quality, tested, maintained programs

Statistical Software Tools

Writing Code

Code Completion

```
Camera camera = Camera.open();
camera.SetDisplayOrientation(90);
?
```

Porting Code

Programming Language Translation

Program Analysis

Points-to/Type Analysis

```
function collect(val, idx, obj) {
   if (val >= this.threshold) { ... }
   points-to

dat.filter( collect, ctx );
```

Testing/Debugging

Statistical Bug Detection

```
for x in range(a):

print a[x] likely error
```

All of these benefit from the "Big Code" and lead to applications not possible with previous techniques

Program Semantics
Program Synthesis
Program Syntax
Program Syntax
Program Synthesis
Representation

Probabilistic Model for Code

Existing Programs

Learning

Model

Probabilistic Model for Code

Goal: Assign probability to a program

Model	Accuracy
Last two tokens, Hindle et. al. [ICSE'12]	22.2%
Last two APIs, Raychev et. al. [PLDI'14]	30.4%

is this the best we can do?

Model	Accuracy
Last two tokens, Hindle et. al. [ICSE'12]	22.2%
Last two APIs, Raychev et. al. [PLDI'14]	30.4%
Last three APIs	
Declaration Site + Last two APIs	
Variable Name + Method Name + Last API	

Identifiers Strings Numbers **Arguments Properties Statements** RegExp

Model	Accuracy
Last two tokens, Hindle et. al. [ICSE'12]	22.2%
Last two APIs, Raychev et. al. [PLDI'14]	30.4%

Program synthesis

66.4%

Model Requirements

Existing Programs

Learning

Model

Probabilistic Model

Widely Applicable Efficient Learning

High Precision Explainable Predictions

Program Synthesis

$$f$$
 () \rightarrow γ Source Conditioning Code Context

Synthesize a function **f** from a domain specific language that explains the data

Function Examples

```
for,
f(p1) = { if, }
length == 0
```

```
for    j = 0; j < groups.length; j++) {
    idsInGroup = groups[j].filter(
        function(id) { return id >= 42; }
    );
    if (idsInGroup.length == 0) {
        ?
    }
}
```

```
notify,
f(p<sub>2</sub>) = { position, }
hide
```

```
elem notify( ..., {
    position: 'top',
    hide: false,
    ?
} );
```

Function Representation

In general: Unrestricted programs (Turing complete)

Our Work:

TCond Language for navigating over trees and accumulating context

Expressing Functions: TCond Language

TCond ::= ε | WriteOp TCond | MoveOp TCond | BranchProg

BranchProg ::= if pred(x) then TCond else TCond

MoveOp ::= Up, Left, Right, DownFirst, DownLast,

NextDFS, PrevDFS, NextLeaf, PrevLeaf,

PrevNodeType, PrevNodeValue, PrevNodeContext

WriteOp ::= WriteValue, WriteType, WritePos

Query

TCond

y

```
elem.notify(
    ...,
    ...,
    {
      position: 'top',
      hide: false,
     ?
    }
);
```

Query

```
elem.notify(
    ...,
    ...,
    {
      position: 'top',
      hide: false,
     ?
    }
);
```

TCond

Left WriteValue γ

{}
{hide}

Query

```
elem.notify(
    ...,
    ...,
    {
      position: 'top',
      hide: false,
      ?
    }
);
```

TCond

```
Left
WriteValue
Up
WritePos
```

{} {hide} {hide} {hide, 3}

y

Query

TCond

```
Left
WriteValue
Up
WritePos
Up
DownFirst
DownLast
WriteValue
```

{} {hide} {hide} {hide, 3} {hide, 3} {hide, 3}

y

{hide, 3}

{hide, 3, notify}

```
Query
                         TCond
                                               y
elem.notify(
                          Left
                                            {hide}
                      WriteValue
                                            {hide}
                           Up
                       WritePos
                                          {hide, 3}
   position: 'top',
                                          {hide, 3}
                           Up
   hide: false,
                                          {hide, 3}
                       DownFirst
                                          {hide, 3}
                       DownLast
                                      {hide, 3, notify}
                      WriteValue
```

{ Previous Property, Parameter Position, API name }

JavaScript 150k Dataset (Source Code in AST Format)

Model	Accuracy
Naïve Bayes	44.2%
Probabilistic Context-Free Grammars (PCFG)	51.1%
SVM	70.5%
N-gram	71.3%
Program Synthesis	81.5%

Linux Kernel (Source Code + Comments)

Model	Error Rate	Training	Queries/s	Size	
LSTM	38.1%	~80 Hrs	300	53 MB	
n-gram	35.9%	4 Sec	41000	24 MB	
Synthesis	31.4%	8 Hrs	28000	19 MB	

Hutter Prize Wikipedia (Natural Language + Metadata)

Model	Bits per Character	
N-gram	1.94	
Program Synthesis	1.67	
Stacked LSTM [Graves et. al. 2013]	1.62	
MRNN [Sutskever et.al. 2011]	1.60	
MI-LSTM [We et.al. 2016]	1.44	
HM-LSTM [Chung et. al. 2017]	1.34	

Work @ ETH Zurich

Prof. Martin Vechev

Veselin Raychev

Pavol Bielik

Christine Zeller

Pascal Roos

Benjamin Bischel

Svetoslav Karaivanov

Benjamin Mularczyk

Prabhakaran Santhanam

Pavle Đorđević

Learning-Based Probabilistic Programming Tools

Writing Code

Code Completion

```
Camera camera = Camera.open();
camera.SetDisplayOrientation(90);
```

Porting Code

Programming Language Translation

Program Analysis

Points-to/Type Analysis

```
function collect(val, idx, obj) {
  if (val >= this.threshold) { ... }
}
Points-to

dat.filter( collect, ctx );
```

Testing/Debugging

Statistical Bug Detection

```
for x in range(a):

print a[x] likely error
```

http://plml.ethz.ch/