Program Synthesis for Character Level Language Modeling Pavol Bielik, Veselin Raychev, Martin Vechev ETHzürich

Character Level Language Model

Statistical language model that estimates a probability distribution over sequences of characters from data

the brown fox jumps over the lazy dog *x*₁ Xn

Generalized problem statement:

$$\arg\min_{\theta} \frac{1}{n} \sum_{t=1}^{n} \log p(x_t \mid f(x_{< t}, \theta))$$

Our Work

Program Synthesis

Automatically constructs a program that satisfies a given specification (e.g., input/output examples)

s)utput	Subject to
learn	p(10011011) = 10011000
100100 function p	p(11100101) = 11100100
110110 ->	p(00110110) = 00110110

Turn-off the rightmost continuous string of 1 bits

01 = (x - 1)p(x) ::= 02 = (x | 01)03 = (02 + 1)return (o3 & x)

Using Programs to Explain Data

Input (sequence of atoms) Mg12 He2 Ai13 Fe26 Mg12 Ag47 ...'

Program explaining the input

Obtaining Probabilistic Model from a Program

Two step process to obtain a probabilistic model from a learned program g

1. Execute program $g(t, x_{< t})$ to obtain f

2. Calculate the probability $P_f(x_t | f(t, x_{< t}))$ using f

P_f estimated using samples assigned to same function f

Learning a Program

Search technique						
SimpleProgram		SwitchProgram				
Enumerative search Genetic programming	МСМС	ID3+ algorithm				
Raychev, V. et. al. Learning Programs from Noisy Data. POPL '16, ACM	This work	Raychev, V. et. al. Probabilistic Model for Code with Decision Trees. OOPSLA '16, ACM				
Problem statement: arg min $\frac{1}{n}$ g \in TChar f =	$\sum_{t=1}^{n} \log \mu$ = g(t, x_{ <t})< td=""><td>$D(x_t \mid f(t, x_{< t})) + \lambda \cdot \Omega(g)$ \uparrow Regularization to avoid too complex programs</td><td></td></t})<>	$D(x_t \mid f(t, x_{< t})) + \lambda \cdot \Omega(g)$ \uparrow Regularization to avoid too complex programs				

TChar	1.53	23.5%	~ 8.2 Hrs	3 000	45 MB
TChar _{w/o cache}	1.75	28.0%	~ 8.2 Hrs	24 000	43 MB
TChar _{w/o backoff}	1.84	31.4%	~ 8 Hrs	28 000	19 MB
TChar _{w/o} cache & backoff	1.92	33.3%	~ 8 Hrs	62 000	17 MB
<i>n</i> -gram (7-gram)	2.23	35.9%	4 Sec	41 000	24 MB

Learned specialized programs for Linux Kernel Dataset

5th International Conference on Learning Representations (ICLR) Toulon, France, April 24-26 2017