Program Synthesis for
Character Level Language Modeling

Pavol Bielik, Veselin Raychev, Martin Vechev

ETHzurich

Character Level Language Model Our Work Program Synthesis
Statistical language model that estimates a probability Automatically constructs a program that satisfies
distribution over sequences of characters from data a given specification (e.g., input/output examples)
Language Program
. Model Synthesis Examples
the brown fox jumps over the lazy dog Y Input P Output Subject to
X1 Xn
Probabilistic Deterministic
(10011011) = 10011000
Generalized problem statement: results results 10011011 / 10011000 |ea_m P
1 < 11100101 / 11100100 functionp p(11100101) = 11100100
arg min Y Y log p(x¢ | f(x<t, 6)) 00110110 / 00110110 — £(00110110) = 00110110
O t=1 Millions of Hundreds of

examples examples

instantiating function f Turn-off the rightmost

Svnth o_urw(;r’I; & $N | Net ’ continuous string of 1 bits
eura etwor :
ynthesise rogram t[\l Simple, but Interestin p(x) ::= ol = (x - 1)
babilistic G Loa-bili Model unexplainable eresting o0z = (x | ol)
Probabilistic Grammar og-bilinear Moae £ netions programs 03 = (02 + 1)
return (03 & X)

Using Programs to Explain Data

Input (sequence of atoms) Two step process to obtain a probabilistic
' Mgl2 He2 Ail3 Fe26 Mgl2 Agd7 ...'° model from a learned program g
1. Execute program g(t, x<¢) to obtain f 2. Calculate the probability P¢(x: | f(t, X<¢)) using f
Program explaining the input t X<t Xt g(t, X
- o _ P estimated using samples assigned to same function f
Probability distribution over next char 2 v 'M" f4 - for example, if
[A-Z] [a-z] [0-9] ' 3 YA 'g! £3
4 ' Mg . f4 ::= Left, WriteChar, Left, WriteChar
| g 1 f4
// first character in a word? model =)
1f Left WriteChar == "' ': — ‘f_l, - 2 Mgl 2 f4 Then Pg(xq | fA(t, X<t)) = Psa (Xt | Xt.1, Xt.2)
// how long is current word? 6 ' Mglz' b £2 corresponds to the tri-gram model obtained using
elif PrevChar(' ') WriteDist == 4: - f£2] . C Mgl2 ' 'H! £1 a maximum likelihood estimation (counting)
// second character in a word?
elif Left WriteChar == [A-Z]: — ‘f_3, - I Program execution
S8 - ® @ ® ® 6
o , _ f3 ::= Left, WriteChar, PrevPos, Right, WriteChar
Selects specialized model trained for Can be further refined to better
a particular kind of predictions model the target distribution First execute program g: @ @ £3(t X<p) = {'M', 'g"]
. '"Mgll2 He2 Ail3 FelZ6 |M| '
What is the model f? g(t, X<t) = £3 ’ I~ used to
In genera|: Our work: @ — D @ calculate the pI‘ObabI/Ity
Any model (e.g., Neural Network) Another program then execute £3 -7 - @ Pes(Xe | £3(t, X<p))
(LMProgram)

DSL for Character Level Language Modeling Evaluation on Source Code and Natural Language

Expresses non-trivial data dependencies using instructions

that operate on a sequence of characters Datasets Carpathy, A et a
Markus Hutter Visualizing and understan'diﬁg I;eCL./rrent networks.
Allows conditioning on Allows conditioning on http://prize.hutterl.net/ ICLR 2016 Workshop
previously seen input program state Hutter Prize Wikipedia Linux Kernel
- & (Natural Language + Metadata) (Source Code + Comments)
TChar ::= SwitchProgram | StateProgram | return LMProgram characters vocabulary size characters vocabulary size
" 100 000 000 205 6 206 996 101
Different model used if
LMProgram ::= SimpleProgram current model is not Hutter Prize Wikipedia Dataset
& confident in a prediction
| SimpleProgram backoff d; LMProgram This work Graves et.al. 2013 Sutskever et.al. 2011 We et.al. 2016 Chung et.al. 2017
| | Predict a value taken Metric n-gram DSL model Stacked LSTM MRNN MI-LSTM HM-LSTM
| (SimpleProgram, SimpleProgram) from a previous
position in the input BPC 1.94 1.67 1.62 1.60 1.44 1.34

& Basic instructions that operate on a sequence of characters

Linux Kernel Dataset

SimpleProgram ::= €& | Move; SimpleProgram | Write; SimpleProgram
Move ::= Left, Right, PrevChar (c € Vocabulary), PrevPos Bits per Error Tra.ining Queries M(?del
Model Character Rate Time per Second Size
Write ::= WriteChar, WriteHash, WriteDist
LSTM (2x512) 2.05 38.1% ~80 Hrs 300 53 MB
Learning a Program n-gram (7-gram) 2.23 35.9% 4 Sec 41 000 24 MB
TCharw/o cache & backoff ~ 1.92 33.3% ~ 8 Hrs 62 000 17 MB
Search technique TCharw/o backoff 1.84 31.4% ~ 8 Hrs 28000 19 MB
SimpleProgram SwitchProgram TCharW/o cache 1.75 28.0% ~ 82 Hrs 24 000 43 MB
Enumerative search . o
Genetic programming T MG ID3+ algorithm TChar 1.53 23.5% ~ 8.2 Hrs 3000 45MB
Raychev, V. et. al. _ Raychev, V. et. al.
Learning Programs from Noisy Data. This work Probabilistic Model for Code with Decision Trees. Learned Specia/ized programs for Linux Kernel Dataset
POPL '16, ACM OOPSLA '16, ACM

spaces first identifier character semicolons

Problem statement: n sl/ \l/ ‘l/

.1
arg min - - Y log p(xt | f(t, x<¢) + 1 + Q(g) rhp = ACCESS ONCE (rdp->nocb head);\n
g € TChar t=1 1\ 1\ 1\ 1\ 1\
f=g(t x. : : : _ _ _ _
9t X< Regularization to avoid too complex programs indentation constants pointer access new line

5th International Conference on Learning Representations (ICLR)

Toulon, France, April 24-26 2017

	Slide 1

